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Abstract

The equilibrium self-consistent distribution of particles in
a high intensity electron synchrotron can be found using the
Haissinski equation and the wake field. At some threshold in-
tensity the bunch becomes unstable. However, radiation damp-
ing causes the particles to be confined and the instabilitydoes not
necessarily cause loss of particles.

It was observed in simulations with a very simple wake field
and short bunches, that energy spread and bunch length oscillate
in a sawtooth fashion. We find that this is due to the double-
peaked nature of the stationary distribution. Over many syn-
chrotron oscillations, particles diffuse from the head peak to the
tail to the point where the tail peak becomes as large as the head.
The two resulting sub-bunches then collapse together in less than
one synchrotron oscillation, causing a net blow-up in emittance.
Radiation damping reduces the emittance and diffusion begins
again.

I. Introduction
A so-called ‘sawtooth’ instability has been observed in the

SLC damping rings [1] and there is evidence that it has been
observed in other electron synchrotrons as well [2]. This insta-
bility appears as a periodic fast blow-up in bunch length, fol-
lowed by damping. We studied the origins of this effect using
multi-particle tracking. Rather than trying to describe an actual
machine, as was done by Bane and Oide [3], we simplified the
model to determine which features of the wake field lead to a
sawtooth behaviour.

We describe the results of the simulation and then give a qual-
itative discussion of the origins of the instability.

II. Numerical Simulations
A. Model

To simulate the electron’s motion in a synchrotron we use a
standard multi-particle tracking scheme [4]. The beam is repre-
sented by N macroparticles each with phase and energy coordi-
nates (zi; ei). These coordinates are recalculated every turn ac-
cording to the following equations.
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T0 is the revolution period, �e is the damping time, �e0 the rms
energy spread in the absence of a wake, V 0

rf
the slope of the rf

voltage, � is the compaction factor, and E0 is the mean energy;
ri is a random number with a standard normal distribution.

To calculateVind we have used the same method used by Bane
[3], i.e. binning the macroparticles in z without smoothing. Then

the voltage Vind induced by the beam is given by
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where Nk is number of particles in the kth bin and W (z) is the
Green function wake field. Other methods of finding Vind [4]
give smoother results for a given number of macroparticles, but
are more CPU-intensive.

For this study, we used a resonator wake field:
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where R is shunt resistance, !0 the resonant frequency, k0 =
!0�z=c is roughly the bunch length in units of the vacuum cham-
ber size, and k1 = k0

p
1� 1=4Q2.

In order to be able to relate the results of this paper with earlier
work [6], [7], it is convenient to use as intensity the dimension-
less parameter I = eN!0(R=Q)=(V 0

rf
�z0).

The radiation damping usually takes tens or even hundreds of
synchrotron oscillations. However, such long damping times re-
quire in general too much CPU time to simulate easily. Fortu-
nately, the damping rate does not play a significant role in insta-
bilities which are fast compared with synchrotron motion. This
is the regime of the present study. To optimize computation time
versus simulation accuracy, we used artificial radiation damping
times on the order of 5 to 10 times the synchrotron oscillation
period.

We found that a reasonable accuracy is achieved with as few
as 5,000 macroparticles. This depends upon the wake field
being fairly smooth: many times more macroparticles are re-
quired for wake fields which have many oscillations in one bunch
length.[3]

For our analysis we have chosen a resonator wake field with a
quality factor Q = 1 and bunch length parameter k0 = 0:5. The
radiation damping time �e was set to 500 turns and other parame-
ters V 0

rf
, �,E0 in eqn. 2 have been chosen to obtain a synchrotron

period of 100 turns.

B. Results

We start with a large emittance and allow the beam to damp.
At low intensities the beam relaxes to a thermodynamically sta-
tionary distribution which is well described by the Haissinski
equation [5]. However when the intensity increases it takes more
time for particles to reach a thermodynamical equilibriumpartic-
ularly when this distribution has a two-peak line density profile.
In the case k0 = 0:5 the second peak in the line density appears
approximately at I = 10. This is near the stability threshold
found by solving the Vlasov equation [7]. See Fig. 5.

The region close to threshold is difficult to model because of
the slow growth rate of the instability. Above approximately



Figure. 1. RMS bunch length (a) and rms energy spread (b) in
case of resonator impedance (Q = 1, k0 = 0:5) at I = 30.
Radiation damping time is �e = 5Ts.

I = 20, the sawtooth instability becomes apparent. As inten-
sity is raised, the sawtooth periodicity also increases. A typical
example showing rms bunch length and energy spread is in fig.1
for I = 30. At very high intensity, the behaviour becomes irreg-
ular: the case of I = 45 is shown in fig.2.

Figure. 2. RMS bunch length and energy spread for the same
parameters as Fig. 1, except that I = 45.

We found that the sawtooth repetition rate is mainly deter-
mined by the diffusion process and not by radiation damping. To
illustrate this point, the case of a 10/3 times stronger radiation
damping is shown on Fig. 3. Comparing Fig. 3 with Fig. 1, one
can see that the sawtooth frequency has not changed.

Figure. 3. RMS bunch length and energy spread for an increased
damping rate: I = 30 and �e = 1:5Ts. Compare with Fig. 1.

A complete cycle corresponding to one ‘tooth’ is shown on
Fig. 4:

� a ! b: The downstream cloud damps down (about 5 syn-
chrotron oscillations).

� b ! c: Diffusion populates the second peak until it is ap-
proximately equal to the first (about 30 synchrotron oscilla-
tions). Note that the two peaks have started to move toward
each other and a third peak is already beginning to form.

Figure. 4. A complete cycle of the sawtooth instability for the
case shown in Fig. 1: I = 30 and �e = 5Ts. The time sequence
is anticlockwise.

Figure. 5. Threshold intensity vs. bunch length parameter k0 in
the case of a broad-band (Q = 1) resonator. The points and dif-
ferent curves are the results of different calculations. See [7]

� c ! d In about 1/3 of a synchrotron period the two main
sub-bunches collapse together.

� d! a The combined bunch throws out a large cloud of par-
ticles as it executes large synchrotron oscillations (less than
a synchrotron period).

The sawtooth behaviour was most clearly seen in the region
0:4 < k0 < 0:6. For k0 < 0:4, the diffusion process was too
slow. For k0 > 0:6, where the threshold intensity increases with
bunch length (Fig. 5), sawtooth behaviour is not seen either; in-
stead, the bunch length oscillates chaotically.

III. Analysis
Qualitatively, the instability can be understood by considering

the wake of an extremely short bunch (Fig. 6, upper). In order for
the energy lost by the bunch to the wake field to be compensated
by the rf cavities, the rf waveform (here drawn as a straight line)
must intersect the wake voltage at half the maximum. This is the
location of the centre of this very short bunch, and is of course a
stable fixed point. Situations for various rf voltage values can be
considered by pivoting the rf waveform (line) about this point, as
indicated in Fig. 6. Situations with differing beam intensities can
be simulated in the same way, since amplifying the wake field



Figure. 6. Green function wake field (upper window), includ-
ing 3 rf waveform slopes; (a) is stable, (b) is just above thresh-
old, and (c) is in the sawtooth regime. Looking from left to right,
there is a stable fixed point if the wake field crosses the rf wave-
form from below, and an unstable fixed point if it crosses from
above. The separatrices created by the wake fields correspond-
ing to cases (b) and (c) have been plotted in the lower window. In
case (a), there is only one stable fixed point so the wake field does
not create a separatrix. Note that these curves are for a Green
function wake and therefore are only suggestive. Any accumu-
lation of a finite charge density will deform the separatrices.

has the same effect on the diagram as reducing the rf slope. At
low intensity or large rf voltage, there is only the one fixed point.
At high intensity or low rf voltage, the wake field intersects the rf
waveform at three points; there is an unstable fixed point behind
the bunch, and a stable one farther along. Separatrices created by
the extra fixed points are shown in the lower window in Fig. 6.

Because of the random excitation due to emission of syn-
chrotron radiation, particles can diffuse through the unstable
fixed point and collect at the downstream stable fixed point.
These particles begin to create their own wake, and will have to
move forward as they lose energy to their own wake field. At
the same time, the remaining particles in the head sub-bunch will
move backwards as they decrease in number and no longer need
as large energy gain from the rf field. At some point, the poten-
tial barrier between the two sub-bunches becomes small enough
that the diffusion turns into an avalanche and the sub-bunches
suddenly coalesce. The resulting bunch is over-dense and at the
wrong phase with respect to the needed energy gain. It begins to
execute a large synchrotron oscillation, while beginning again to
lose particles to diffusion. This results in a large cloud of parti-
cles and a large rms bunch length and energy spread. The cloud
condenses again at the downstream stable fixed point and diffu-
sion continues.

IV. Conclusion
We have developed a qualitative picture of the sawtooth insta-

bility. The wake field creates its own unstable and stable fixed
points, particles diffuse to the second fixed point, and then the
resulting second sub-bunch collapses into the head sub-bunch.
The sawtooth frequency is therefore determined not primarily by
radiation damping, but by a subsequent diffusion process.

The sawtooth effect is most readily seen when the bunch
length is comparable with the wake field length. Qualitatively
quite different behaviours can be seen when the bunch is ei-
ther short or long compared with the wake. In the former case,
for example, the two sub-bunches can sometimes pass through
each other instead of collapsing, thus leading to a sustained
quadrupole oscillation. This may be the type of behaviour seen
in LEP [8]. These regimes as well as other types of wake fields
are still under investigation.
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