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Abstract

For the case of a bunched beam confined to a quadratic po-
tential well, we demonstrate the necessity for considering mode-
coupling to correctly obtain the threshold current for the d.c. in-
stability. Further we find the effect upon growth rate and co-
herent tune shift of evaluating the impedance at a complex fre-
quency. For the case of a bunched beam confined to a cosine po-
tential well, we give an exact analytic expression for the disper-
sion integral, and calculate (with no approximations), the stabil-
ity diagram for the Robinson instability taking into account Lan-
dau damping. This paper comprises extracts from a lengthy in-
ternal report[1].

I. SIMPLE HARMONIC OSCILLATOR CASE
We consider the stability of a single bunch confined in a

quadratic potential well that is truncated at rf-phase x = �� .
Let !s be the synchrotron frequency. We shall investigate the
stability of the system through use of the linearized Vlasov equa-
tion in which products of two perturbation terms will be ignored.
Let the phase-space steady-state and perturbation distribution
functions be 	0(J) and be 	1, respectively. In action-angle co-
ordinates (J; �), the Vlasov equation becomes:

[@=@t + (d�=dt)@=@�]	1 = (@	0=@J)(@H=@�) : (1)

We shall assume 	1 to have time dependence est with the
complex perturbation Laplace frequency s = � + i! . Let
i =

p�1 and takeR[: : :] to mean “form the real part”.
Henceforward, we shall employ the symbols q and p as integer

indices for Fourier harmonics.
Let � = 2�Id:c:=Vrf .
The beam current perturbation signal is �(x; t) =

R[est
P

q �qe
iqx] and leads to perturbing forces @H=@� =

!2s w(x; t) where the wakefields are:

w(x; t) = �R[est
P

qwq] with wq = Zq(!; �)�qe
iqx : (2)

The arguments of the complex impedanceZq are used to indi-
cate the modulation sideband frequency. Hence Z+q (+!; �) =
Z(+q!rf+!; �) = Z(+q!rf+!�i�) is the complex impedance
evaluated at the!�i� sideband of the qth harmonic of the radio-
frequency !rf .

As a trial solution of the Vlasov equation we take

	1 = R[ est] with  (J; �) =
P

m m(J)eim� ; (3)

wherem is the azimuthal mode index, andm = 0 is excluded.
After separating the Vlasov equation, we find the radial functions

 +n(J) =
!2s � n

[s+ i n!s]
	00

X
p

Zp(!; �)
1

p
�p J+n(+p�k) :

(4)
where k2 = J=J0 and J0 = !s�

2=2 is an action value, but the
Jn(: : :) with an argument are Bessel functions. The prime nota-
tion indicates a derivative with respect to action J . The Fourier
harmonics are:

2��q(n) =
R
 n(J)e

�iqx e+in�d�dJ ; (5)

and so the eigenvalue problem is

�q(n) =
!s � n

[s+ i n!s]

X
p

Zp(!; �)
1

p
�p In(q; p) : (6)

Note, in the above equation the �p without arguments is the
sum over the �p(n) with arguments.

A. Single azimuthal mode and narrowband impedance

Consider the case of a solitary
azimuthal  (J; �) =  m(J)eim� . Consider the case of a nar-
rowband impedance such thatZp is only significant in the vicin-
ity of p = q > 0 . This results in an eigenfrequency equation:

(s + im!s) = m!s Im(q; q) � [Z+q � Z�q]=q : (7)

where Im(q; q) = !s
R J0
0
	00 J

2
+m(q�k) dJ : (8)

The combination �Z and integral Im are both dimensionless. If
and only if both Z�q 6= 0 and Z+q 6= 0 , then equation (7) has
the property that if m) �m, then s) s� .

Let the impedance Z = R + iX be composed of a resistive
part R and a reactive part X, then we find the eigenfrequency:

!=(m!s) = Im �[X(q!rf + !) + X(q!rf � !)]=q � 1 (9)

�=(m!s) = Im �[R(q!rf + !) � R(q!rf � !)]=q : (10)

These equations have to be solved recursively for s . At high
enough current, there is a solution with mode frequency s = 0,
which satisfies the condition:

q = 2 � X(q!rf) Im(q; q) : (11)

B. �m mode-coupling and narrowband impedance

Consider the case of two azimuthal modes,

 (J; �) = [ +me
+im� +  �me

�im�] : (12)



Consider the case that impedance Zp is only significant in the
vicinity of p = q > 0 . This results in an eigenfrequency equa-
tion.

i
(s2 +m2!2s)

(m!s)2
=2�[Z(+q!rf+!; �)�Z(�q!rf+!; �)]

1

q
Im(q; q) :

(13)
The equation separates into imaginary and real parts as:

!2 � �2

(m!s)2
= 12 � 2 Im�[X(q!rf + !) +X(q!rf � !)]=q

! �=(m!s)
2
= +Im�[R(q!rf � !) �R(q!rf + !)]=q : (14)

At high enough current, there is a solution with mode fre-
quency s2 � 0 .

q = 4 � X(q!rf) Im(q; q) : (15)

The value of the threshold differs by a factor 2 from the case
of no mode coupling, expression (11).

II. IMPEDANCE AT COMPLEX FREQUENCY

If we continueZ into the complex plane, given the functional
formZ(!; 0), then the response to exp(�+i!)t isZ(!; �) =
Z(! � i�) . Actually, one does not need to know the form, but
only the derivatives of resistanceR and reactanceX with respect
to frequency !. We denote derivatives with respect to real an-
gular frequency ! by @!. Let Z(!; �) = R + iX. We may
then employ the Cauchy-Riemann conditions for analytic com-
plex functions:

@R=@� = �@X=@! and @X=@� = +@R=@! ;

to find the first order Taylor expansion

Z(!0; �0) � Z(!0; 0) + (�i�0)� @!Z
���
�=0

!=!
0

: (16)

A. Eigenvalues with narrowband impedance

Consider a narrowband impedance that is still sufficiently
broad to include both the upper and lower sideband. An approx-
imation of [Z�q � Z+q ] is

Z�q(!; �)�Z+q (!; �) ��2[iX(q!rf)+(!� i�)@!R(q!rf)] :

(17)
Substitution of (17) into (14) leads to the eigenvalue

[!2 + �2]=(m!s)
2 = 12 � 4Im � X(q!rf)=q (18)

�=(m!s) = �2 Im � m!s[@!R(q!rf)]=q :(19)

These forms show that, to first order, and for single bunch in-
stability, evaluation of the impedance at a complex frequency al-
ters the coherent tune, but does not change the growth rate.

III. SIMPLE PENDULUM OSCILLATOR
Consider the stability of a single bunch confined in a sinu-

soidal potential well. The unperturbed Hamiltonian is:

H(x; y) = y2=2 + !2s [1� cosx] = y2=2 + 2!2s sin
2(x=2) :

(20)
We shall investigate the stability of a multi-particle system of

oscillators through use of the Vlasov equation; the equation is
simplified if we employ action-angle coordinates.

sin(x=2) = k sn� =
p
J=J0 sn� (21)

y = 2!sk cn� = 2!s
p
J=J0 cn� : (22)

J0 = 2!s and sn; cn dn are Jacobean elliptic functions.
The time variation of � is � = !s(t�t0) where t0 is a constant

of integration.
The trial solution must be separable after integrating � over

the interval [�2K;+2K] . Hence, we take:

	1 = R[est
P+1

�1
 m(J)eim��=2K] : (23)

After separation, we find the radial functions n :

 n(J) =
!2s0 � n

[s+ in!s(J)]

h �
2K
i
	00

X
p

Zp(!)
1

p
�pJn(p; k) :

(24)
Using the Jacobean elliptic analogue of the Hankel transform

we find a particular case of Lebedev’s[2] expression:

�q(n) = !2s0�
X
p

Zp(!)�p

h
n
p

iZ J0

0

Jn(p; k)	00Jn(q; k)
s + i n !s(J)

dJ :

(25)
If we sum this equation over mode number n, we obtain an

eigenvalue problem for the harmonics �q . The form factors are

J+n(+q; k) � 4K =
R +2K
�2K

e�iqx e+in��=2K d� (26)

=

Z +2K

�2K

[dn� � ik sn�]+2q e+in��=2K d� ;

and have the properties: Jn(q; 0) = 0 and Jn(q; 1) = 0 .

A. Narrowband impedance at cavity radio-frequency

In general, the integralsJn(q; k) are awkward to evaluate an-
alytically. To simplify, we shall consider an impedance that is
significant only at the p = �1 harmonics of the cavity radio-
frequency. For odd-n we find:

Jn(1; k) = n
h �
K
i2 qn=2

1 + qn
with q = exp

���K(k0)
K(k)

�
:

(27)
Here q is the ‘nome’ and (k0)2 = 1 � k2 . Expressions for

even-n are rather complicated, but

J2(1; k) � [2�=K]2q=[2(1 + q)2] : (28)



B. �m mode coupling and narrowband impedance

Previously, we saw that a mode-coupling theory is essential
when the tune shifts and growth rates are comparable with the
unperturbed synchrotron frequency. Consequently, we shall not
bother to consider the cases of the �m and the +m modes in
isolation. Let the mode index m be single sided and valued
and take the trial distribution function (12). For the narrowband
impedance we obtain the eigenfrequency equation:

i = �[Z+1 � Z�1]2m2!2s0

Z J0

0

!s(J)	
0
0J 2

m(1; k)

s2 + m2!2s(J)
dJ : (29)

Let us search for a threshold and take s = i! pure imaginary.
Let the value of action at which the integral is singular be ~J(!)

and define ~k =

q
~J=J0 . Then we have the eigenequation:

i = �[Z(�!rf + !) � Z(+!rf + !)]� [f(!) + ig(!)] (30)

where the quantities f and g are:

f(!) = 2m2!2s0P
Z J0

0

!s(J)	
0

0 J 2
m(1; k)

!2 � m2!2s(J)
dJ (31)

g(!) = !2s0 �	
0

0(
~J)J 2

m(1; ~k)
.
[@!s=@J ] ~J : (32)

Here P indicates the principal value, and g is the residue.

C. Power limited instability

For the power limited instability, the eigenfrequencies are
!2 = 0 . Now zero frequency is either outside the spread of in-
coherent frequencies, or (for a full bucket) at the very edge of the
bunch where there are no particles. Consequently, this particu-
lar instability is not Landau damped. We substitute !2 = 0 and
find the Fourier components are equal ��1(�m) = ��1(+m) ,
and that the threshold current is given by

1 = 4 � X(!rf) !
2
s0

Z J0

0

	00
J 2
m(1; k)

!2s(J)
dJ : (33)

This only differs from the linear oscillator case by virtue of the
exact value of the integral.

D. Stability Diagram for m = �1 mode coupling

We can generate constraints on the allowable impedance by
considering

U (!)+iV (!) =
i

[f + ig]

Ia:c:

Id:c:
=

2�Ia:c:

Vrf
[Z�1�Z+1] : (34)

HereVrf is the cavity voltage summed about the ring, andU; V
have been normalized so that the excitation current is indepen-
dent of bunch length. The method is to plot contours of con-
stant growth rate in the U; V -plane by scanning !. The insta-
bility threshold is given by the curve of zero growth rate and is
a function of Ĵ . If on the same plot, the curve Z(!) lies wholly
inside the threshold curve, then that mode is stable. As shown in

figures 1–4, for the case jmj = 1 , we have evaluated the thresh-
old diagrams for some of the binomial functions

	0(J) / (1� J=Ĵ)� for J � Ĵ (35)

The contours depict the ten cases Ĵ=J0 = 0 to 1 in steps of 0:1.
The innermost and outermost contours correspond to Ĵ = 0 and
Ĵ=J0 = 1 , respectively. For the case � < 1 the upper intercept
V̂ = V (�!) must be zero, while for � > 1 intercept V̂ > 0 ; for
� = 1 intercept V̂ is undefined. For constant FW bunch length,
the r.m.s. frequency spread diminishes as � increases and so the
stableU; V region grows smaller; hence the plots have different
scales.
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Figure 1. Stability diagram for � = 1=2 as function of Ĵ .

Figure 2. Stability diagram for � = 1 as function of Ĵ .

Figure 3. Stability diagram for � = 2 as function of Ĵ .

Figure 4. Stability diagram for � = 10 as function of Ĵ .


