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Abstract

For the case of a bunched beam confined to a quadratic po-
tential well, we demonstrate the necessity for considering mode-
coupling to correctly obtain the threshold current for thed.c. in-
stability. Further we find the effect upon growth rate and co-
herent tune shift of evaluating the impedance at a complex fre-
guency. For the case of abunched beam confined to a cosine po-
tential well, we give an exact anaytic expression for the disper-
sionintegral, and cal cul ate (with no approximations), the stabil -
ity diagram for the Robinsoninstability taking into account Lan-
dau damping. This paper comprises extracts from a lengthy in-
terna report[1].

. SIMPLE HARMONIC OSCILLATOR CASE

We consider the stability of a single bunch confined in a
quadratic potential well that istruncated at rf-phasez = +r .
Let w; be the synchrotron frequency. We shal investigate the
stability of the system through use of thelinearized V1asov equa
tioninwhich productsof two perturbationtermswill beignored.
Let the phase-space steady-state and perturbation distribution
functionsbe ¥ (.J) and be ¥, respectively. In action-angle co-
ordinates (/, #), the Vlasov equation becomes:

[0/0t + (d6/dt)0/d01¥, = (0Wo/0J)(0H/08) . (1)

We shall assume ¥; to have time dependence ¢*¢ with the
complex perturbation Laplace frequency s = o + iw . Let
i = /—1 andtakeR[...] tomean “form thereal part”.

Henceforward, we shall employ the symbolsq and p asinteger
indices for Fourier harmonics.

Leté =2l / Vit -

The beam current perturbation signa is  A(z,1) =
Rt Y0, Age’®*]  and leads to perturbing forces 9H/00 =
w? w(z,t) wherethewakefields are:
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The arguments of the complex impedance Z,, are used to indi-
cate the modul ation sideband frequency. Hence Z, , (+w, o) =
Z(+quitw, o) = Z(+quwi+w—ic) isthecomplex impedance
evaluated at thew — i Sideband of the ¢ harmonic of theradio-
frequency wis .

Asatrial solution of the Vlasov equation we take

w(z,t) = E’R[eSthwq] with wy, = Z4(w, U)/\qeiqx :

Uy =R e with (J,0) =3, dm(J)e™ 5 (3)

where m isthe azimuthal modeindex, and m = 0 isexcluded.
After separating the Vlasov equation, wefind theradial functions

w2én

1
Vin(J) = ]\I!f)ZZp(w,U);/\p Jin (+p7k) .
P

[s + inws
(4)

wherek? = J/Jyand Jy = w,n? /2 isan actionvalue, but the
Jn (.. .) with an argument are Bessel functions. The prime nota-
tion indicates a derivative with respect to action /. The Fourier
harmonics are:

21Ag(n) = [¥n(J)e ' et PdodT | (5)

and so the eigenvalue problemis

wsén

Ag(n) =

1
— N Z =X In(q,p) . 6
[5+ ans]zp: p(wao-)p P (q p) ( )
Note, in the above equation the A, without argumentsis the
sum over the A, (n) with arguments.

A. Single azimuthal mode and narrowband impedance

Consider the case of a solitary
azimutha ¥(J,0) = v,,,(J)e'™? . Consider the case of anar-
rowband impedance such that Z, isonly significant in thevicin-
ity of p = ¢ > 0. Thisresultsin an eigenfrequency equation:

(54 imw) = mw, Ln(e.0)€[Zog — Z-g)/a . (7

where 1,(q,9) = ws OJD\I!6 Ji(gnk)dJ . (8)

The combination ¢ Z and integral /,,, are both dimensionless. If
andonly if both Z_, # 0 and Z;, # 0, then equation (7) has
the property that if i = —m, thens = s* .

Let theimpedance Z = R + X be composed of aresistive
part R and areactive part X, then we find the elgenfrequency:

w/(mws) = Iy

of/(mws) = Iy

E[X (qwr +w) + X(qwri —w)]/q —1(9)
{[R(qwr +w) — R(quwi —w)]/q . (10)

These equations have to be solved recursively for s . At high
enough current, there is a solution with mode frequency s = 0,
which satisfies the condition:

g = 26 X(qwn) Im(q,q) - (11)
B. +m mode-coupling and narrowband impedance
Consider the case of two azimuthal modes,
1/)(J, 9) = [1/)+me+im€ + 1/)_me—im€] . (12)



Consider the case that impedance Z,, isonly significant in the

vicinity of p = ¢ > 0. Thisresultsin an eigenfrequency equa-
tion.

(s? + m2w?)

i) (7 (4 gt 0)— 2~ qurbe, )]~ I (4, 4)

(mws)?
(13)
The equation separates into imaginary and real parts as:

sz;s()rz = 12 = 2 [, ¢[X (qur +w) + X (qur — w)]/q
wo/(mws)® = +Iné[R(qui —w) — R(qui +w)]/q . (14)

At high enough current, there is a solution with mode fre-
quency s2 = 0.

= A& X (qurt) Im(q,q) - (15)

The value of the threshold differs by a factor 2 from the case
of no mode coupling, expression (11).

1. IMPEDANCE AT COMPLEX FREQUENCY

If we continue 7 into the complex plane, given the functional
form Z(w, 0), thentheresponsetoexp(c +iw)t isZ(w, o) =
Z(w — io) . Actually, one does not need to know the form, but
only thederivativesof resistance R and reactance X withrespect
to frequency w. We denote derivatives with respect to real an-
gular frequency w by d,,. Let Z(w, ¢) = R+ iX. We may
then employ the Cauchy-Riemann conditionsfor anaytic com-
plex functions:

OR/00 = —0X/0w and 9X/do = +IR/dw |

to find the first order Taylor expansion

Z(W'0) + (—ic') x 0,7 (16)

A. Eigenvalueswith narrowband impedance

Consider a narrowband impedance that is till sufficiently
broad to include both the upper and lower sideband. An approx-
imationof [Z_, — Z,,] is

Z_g(w,0) = Zyq(w,0) = =201 X (qwr) + (w — i0) 0 R(gwrr)] -
17)

Substitution of (17) into (14) leadsto the eigenvaue
[w? + 0'2]/(mws)2 = 17 - A1 & X (quit)/q (18)

o/ (mws) =2 Iy € mw; [0 R(qwit)]/q (19)

These forms show that, to first order, and for single bunch in-
stability, evaluation of theimpedance at acomplex frequency al-
ters the coherent tune, but does not change the growth rate.

1. SSIMPLE PENDULUM OSCILLATOR

Consider the stability of a single bunch confined in a sinu-
soidal potential well. The unperturbed Hamiltonianiis:

H(z,y) = y*/2 + W[l — cosx] = y*/2 4 2w?sin*(x/2) .

(20)
We shall investigate the stability of a multi-particle system of
oscillators through use of the Vlasov equation; the equation is
simplified if we employ action-angle coordinates.

sin(z/2) = ksnd = /J/Jy sl (22)
y = 2wskend =2we/J/Jycnd . (22

Jo = 2w and sn, cn dn are Jacobean dliptic functions.

Thetimevariationof ¢ isé = w, (¢t —ty) wheret, isaconstant
of integration.

Thetria solution must be separable after integrating 6 over
theinterval [—2K, +2K] . Hence, wetake:

Wy = RIS g (1) (23)
After separation, we find theradia functionst,, :
_ sO g n /
wn(J)_[S—I—mws [ }\Ij ZZ /\j” (p, k) -
(24)

Using the Jacobean dlliptic analogue of the Hankel transform
we find a particular case of Lebedev’§2] expression:

dJ .

J
* Tn(p, k)VoTn (g, k)
_ 2 n 0
n)—wsogzp:zp(w)/\P{p} o 5—|—inws(J)
(25)
If we sum this equation over mode number n, we obtain an
eigenvalue problem for the harmonics A, . The form factors are

j+n (+(], k) < 4K = f_-|—22I/CCe—iqx e+inﬂ'€/2/€ do (26)

+2K '
- / [dng — ik sng] 27 eTinT8/2K g
—2K

and have the properties: 7,,(¢,0) = 0 and J,(¢,1) = 0.

A. Narrowband impedance at cavity radio-frequency

Ingenerd, theintegrals 7, (¢, k) are awkward to evaluate an-
alyticaly. To simplify, we shall consider an impedance that is
significant only at the p = +1 harmonics of the cavity radio-
frequency. For odd-n we find:

o [m? g2 . B —mK (k)
jn(l’k)_n{lC} 1o with q_exp[ K(k) :
(27)
Here ¢ isthe ‘nome’ and (k)? = 1 — k? . Expressions for
even-n are rather complicated, but
Jo(L, k) ~ [20/KTPq/[2(1+ )°] - (28)



B. +m mode coupling and narrowband impedance

Previoudly, we saw that a mode-coupling theory is essentia
when the tune shifts and growth rates are comparable with the
unperturbed synchrotron frequency. Consequently, we shall not
bother to consider the cases of the —m and the +m modes in
isolation. Let the mode index m be single sided and valued
and take thetrial distributionfunction (12). For the narrowband
impedance we obtain the eigenfrequency equation:

Jo
2
1]2m Wso/
0

Let us search for athreshold and take s = 4w pureimaginary.
Let the value of action at which the integral is singular be J(w)

and define k = \/J/Jo . Then we have the eigenequation:

ws (J) T (L, k)

dJ .
s 4+ mPw2(J)

1= g[Z+1 —Z_

(29)

EZ(—wi+w) — Z(+wi +w)] x [f(w) +ig(w)] (30)

7 =

where the quantities f and g are:

Jo ws / 2
flw) = 2m wsOP/ _\Ij 0 Im 2((1J)k) dJ (3D
glw) = W mU () TR [10ws/0]; . (32

Here P indicates the principal value, and ¢ istheresidue.

C. Power limitedinstability

For the power limited instability, the eigenfrequencies are

2 = 0. Now zero frequency is either outside the spread of in-
coherent frequencies, or (for afull bucket) at thevery edge of the
bunch where there are no particles. Consequently, this particu-
lar instability is not Landau damped. We substitutew? = 0 and

find the Fourier componentsareequd A_1(—m) = A_1(+m),
and that the threshold current is given by
TE(L k)
= 46X 2 ¥y dJ . 33
g (wrf) wsO/O w? (J) J ( )

Thisonly differsfromthelinear oscillator case by virtueof the
exact value of theintegral .

D. Sability Diagramfor m = 41 mode coupling

We can generate constraints on the allowable impedance by
considering

. Tac 27l
[f + ig] Iac. B Vit

HereV; isthecavity voltage summed about thering,and U, VV
have been normalized so that the excitation current isindepen-
dent of bunch length. The method is to plot contours of con-
stant growth rate in the U/, V'-plane by scanning w. Theinsta-
bility threshold is given by the curve of zero growth rate and is
afunction of J . If on the same plot, the curve Z (w) lieswholly
insidethethreshold curve, then that modeis stable. Asshownin

U (w)+iV (w) = [Z_1—Z.1] . (34)

figures 14, for thecase |m| = 1, we have evauated the thresh-
old diagrams for some of the binomial functions
for J < J

Uo(J) x (1—J/J)" (35)

Thecontoursdepictthetmcas&sj/Jo = (0tolinstepsof 0.1.
Theinnermost and outermost contours correspond to J=0and
J/Jo =1, respectively. For the case o < 1 the upper intercept
V = V(&) must be zero, whilefor a > 1 intercept V > 0 ; for
o = 1 intercept V isundefined. For constant FW bunch length,
ther.m.s. frequency spread diminishes as « increases and so the
stable U/, V' region grows smaller; hence the plots have different
scales.
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Figure3. Stability diagram for o = 2 asfunction of .J.
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Figure4. Stability diagram for o = 10 as function of J.



