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Abstract

The question of microwave stability at transition is revisited
using aVlasov approach retaining higher order termsin the par-
ticle dynamics near the transition energy. A dispersion relation
is derived which can be solved numerically for the complex fre-
guency in terms of the longitudina impedance and other beam
parameters. Stability near transition is examined and compared
with simulation results.

I. INTRODUCTION

Thequestion of microwave stability at transition haslong been
an issue for machines which must pass through transition en-
ergy. Duetothefact that therelativemotion of particlesat transi-
tion goesto zero, Landau damping is presumed to vanish. How-
ever, growth rates may aso be sufficiently long to prevent sig-
nificant mode growth. Recent theoretical studies have suggested
that transitionisabsol utely stable against microwave modes ow-
ing to a particular cancellation of resonant contributions[1], a-
though this analysis was based on a truncated model of the par-
ticle dynamics.

In thiswork we would like to reconsider microwave stability
at transition including a necessarily higher-order expansion of
the particle motion around the transition point. Thisisdonein
order to resolve the pole-cancel lation issuereferred to above. In
particular, we find that whileaportion of thedistributionmay in-
deed be stable near transition, those particleswhich exist dlightly
off transitionin adistribution of finite momentum spread will a-
ways lead to instability. By retaining higher-order termsin the
particle motion, we find an extension of the usual linear stability
mode! for longitudina modes which shows the appearance of a
new unstable branch. The resulting dispersion relation is solved
numerically for the stability boundary in the impedance plane.

Asaconfirmation of theanalytical results, we have performed
particle simulationsin a coasting beam, consistent with the no-
tion of short- wavelength modes associated with microwave in-
stability. Using this approach, we find that regions of instability
always occur abovetransition that can lead to longitudinal emit-
tance blowup.

1. THEORY

The following dispersion relation can be derived from the
Vlasov equation [1] which expresses the relation between the
impedance and the coherent frequency of the collective mode.
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where N isthe number of particles, » is the harmonic number,
7, istheimpedance associ ated withthenth harmonic, ¢ isanor-
malized distribution function which is a solution to the Vlasov
equation, ¢ isthe energy deviation from the synchronous parti-
clewhichisreferred to by the subscript 0, and £2,, isthe coherent
frequency. Theintegra contour ischosen so that €2,, is continu-
ouswhile crossing thereal axis. The frequency w(e) interms of
the dispersion coefficents is given by
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The quantitiesag and oy arethe momentum compaction factors.
We have solved Egn. 1 for Z,, /n assuming a Gaussian distri-
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The integral can be reduced to evaluating the plasma disper-
sionintegral which can be expressed in terms of the complex er-
ror function. Thedetailsareoutlinedintheappendix. Theresults
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The quantities A, B, ¢; and ¢- are defined in Egns. 15-17.

[11. CALCULATIONS
A. Sability Diagram

A program was written to plot the real part of Z,,/n vs. the
imaginary part for Eqn. 7 for different val ues of the coherent fre-
guency £2,, and different places near trandition. Figure 1 isaplot
of the stability diagram below transition. The dotsare for areal
coherent frequency and theplusesarefor acomplex coherent fre-
guency. The beam is stable.

Figure2isaplot of thestability diagram abovetransition. The
dots are for areal coherent frequency and the pluses are for a
complex coherent frequency. There are regions of unstability.
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Figure 1. Stability diagram below transition. There are no re-
gionsof instability.
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Figure2. Stability diagram above transition.

B. Particle Smulation

Simulations of coherent phenomena in coasting beams were
first reported in 1975 [2]. The essential physicsis contained in
the character of theincrementa kicks given to the particle's po-
sition and energy per turn, relativeto the central momentum par-
ticle. These may be expressed in the form

50 = —i(c)e ®)

2 oo
__ ¢ Z iné —iw
(56 = (271_)72% a € /_Oo Z”n(W)e td(.d (9)

where 7 i the longitudinal impedance and is the Fourier trans-
form of the wake function given by

Z(w) = / e Wi(—s)ds

It isreadily shown that Egs. (8) and (9), in the case of small
perturbations, lead to the linear dispersion relation for longitu-
dina modes. We note thae n is a function of ¢ and may go to
zero, which is the formal definition of transition. We keep both
first and second-order correctionsto  in our simulation to cor-
respond to the analytical model described previously.

Thetime domain representation of the wake field ismost con-
venient for computational purposes and thisisgiveninthe form
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Figure 3. Particle simulation below transition. The distribution
isstable.
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Figure4. Particlesimulationabovetransition. Aninstability has
developed.
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I(9) is the current distribution and wy is the revolution fre-
guency. Theintegration over angleiscarried out at afixed time
each turn and may be extended into previousturnsfor long-range
wakes (sufficiently high Q).

For the simulations in thiswork, we typically use 10* — 10°
particles and invoke periodic boundary conditions associated
with the lowest revolution harmonic of interest. Figure 3 isa
simulation of a beam before transition. The beam is stable con-
firming the results of Figure 1. Abovetransition, the simulation
(Figure4) showsthat thereisinstability confirming theresults of
Figure 2.

V. CONCLUSIONS

We have revisited the question of microwave stability at tran-
sitionand have shown by including higher-order terms of theex-
pansion of particle motion around the transition point that parti-



cleswhicharedightly off transitionin adistributionof finitemo-
mentum spread will aways lead to instability above transition.

V. Appendix

Theintegral in Egn. 1 can be written with some factorization
as
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Theintegral can bebroken upinto pieces by themethod of partial
fractions and reduces to
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isthe plasma dispersion function which can be evaluated numer-
ically interms of the complex error function.
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