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Abstract

Properties of the wall impedance of a storage ring are studied
for alow relativism, v — 1 < 1. Both broad and narrow band
impedances are shown to be damped at |ow energies, the damp-
ingfactorsarefound. Coherent motion of acoastingbeamisdis-
cussed; Landau decrements are cal cul ated.

|. INTRODUCTION

The impedance of a vacuum chamber [1] depends on a beam
velocity. This dependence vanishesin an ultrarelativistic limit,
where al thefields excited by apoint chargelag behindit, which
isreferred to as the causality principlefor wake fields, see e. g.
[2]. This causality principle does not work for low and moder-
ate energies, where the relativistic factor v ~ 1: the Coulomb
field is not here a -function of a longitudina coordinate, but
smoothly increase and decrease during the time 7 ~ r/~v,
where r is an impact parameter. It follows that a broad band
wall impedance 7 (w) isexponentially depressed at frequencies
w > ~vv/b, where b is an aperture radius. A pure space charge
impedance isthe only remaining at these frequencies, but it does
not lead to instabilities of itself. A narrow band impedance is
shown to be depressed to alesser extent, thenthe broad band one,
due to arather sharp boundary of the eigenfield at the entrance,
Az=1b/2.4.

A coherent motion of coasting beam is discussed; the Landau
damping of both longitudinal and transverse oscillationsis lost
when aspace charge of the beam separates coherent and i ncoher-
ent frequencies [6], [9], [10]. Longitudinal and transverse Lan-
dau decrements are asymptotically calculated here for athermal
equilibrium.

[I. IMPEDANCE DAMPING FACTORS
A. \all Resistivity

Assuming the field dependence on the longitudina coordi-
nate and time as ¢*(*=vY) Maxwell’s equations reduce to the
Poisson equation for a longitudina eectric field £, excited
by a charge linear density perturbation. Applying Leontovich
boundary condition at the resistive wall surface, [3], £, (b) =
/—tkv/(4no) By, the eectric field E, in a perfectly conduct-
ing tube and itsperturbation £, dueto afinitewallsconductivity
o [4] can be found.

The fidds E,, E, and the current perturbation .J are con-
nected by corresponding impedances, £.C = —ZIlJ, E.C =
— 717, where C' isthering circumference, which gives:
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where§ = ¢/vV2rokv istheskindepth, L = In (rpmey/a) +
1/2 is the logarithmic factor with ry,q, = min (b, 1/k), ais

thebeam radius. Here ahigh frequency dampingfactor f(«) has
been introduced:
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K (k), I, (x) aremodified Bessel functions.

The transverce resistive-wall impedance Z+ is found by the
similar way; for any rdativism Z+ = 2211 /(kb?).

The redl part of Zll(x) achieves its maximum at the dimen-
sionlesswavenumber x = 0.43,

ReZll .. =0.24Z0(R/b)\/vv/(27ab),

Zy = 4rfe = 37702 Assuming 5 = 04,0 =
10651, R=10m, b = 5 em, it givesReZhax = 39.
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B. Broad Band Impedances

Theresistivewall impedance Z!l (Eq.1) can berepresented in
terms of its ultrarelativistic value Z'Jr and the damping factor

f(x) (Eq.2) :

Mw) =2l f(x), 5 =wb/(yv). 3
Thefactor f(«x) reflects the strong decrease of the incident field
energy flux at the distance r = b as ~ exp(—2kb/v). The
incident field of the beam, damped near the walls as f1/2 ~
exp(—kb/~), produces proportionally to itself a perturbation of
thesurface current density. Theenergy losswhichisaproduct of
thefield £, and the current induced, is damped quadratically, as
fY2. 12 = f ~ mexp(—2kb/v). The energy loss is propor-
tional to thered part of theimpedance, so thelast oneisdamped
in the same way.

Thus, Eq.(3) followsfrom the symple physical consideration,
which isthesame for all thetypes of thewall imperfections. The
only importance is that field perturbations introduced by these
imperfections are small, which practically can be applied to al
broad band wall impedances.

Thereal part of the broad band impedance has hon-zero value
only above the low frequency cut-off: w > w.. For the circular
cross-section of the vacuum chamber w. = 2.4¢/b. Teking into
account that w = kv, the damping factor f near the lowest pos-
sible frequency (cut-off) occursto be:

[~ mexp (—4.8/(v3))

So, the broad band impedance of wall imperfections (disconti-
nuities, shallow cavities, irises, etc.) cannot play any rolefor in-
sufficiently relativistic particles. Even for 5 = 0.4, the damping
factor f = 2 - 10~° , which makes the broad band impedance
completely negligible.

For a transverse broad band impedance, Z+ the low energy
suppression is actua even to the grater extent. The cut-off fre-
quency for unsymmetrical modes of the vacuum pipew; issig-
nificantly higher, than for symmetrical ones, w} = 3.8¢/b for



thecircular pipe, which givesthefolowingtransversebroad band
damping factor:
7+ (w) = Zip (@) f1(w),

J1(r) = exp(=7.6/(v7)). (4)

C. Narrow Band Impedances

Another possibility for energy lossand for instabilitiesis con-
nected with the radiation in low frequency (w < w.) modes
of some elements of the vacuum chamber. At the resonance,
the impedance is pure redl, it achieves here its maximum, the
shunt impedance R;(v). The velocity dependence of the shunt
impedance is determined by atransite time factor 7'(v) (see, e.

E(z)e_iwz/v)dz,

g [5):
=
®

where F(z) isan arbitrary normalized eigenfield distribution. It
follows the estimation:
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= [Bsin(wg/(2v))/ sin(wg/(2¢))])? {smi%} ;

where v = wg/v, g isagaplength, ¢ = 7wAz/v, lon-
gitudina variation of the eigenfield in the gap assumed to be
< w/v. The{...}- factor reflects an influence of a width of the
field boundary Az = b/2.4 a the entrance and exit of the nar-
row band el ement.

[11. COHERENT STABILITY
A. Longitudinal Oscillations

The disperson relation can be found from
the kinetic equation, which is the Vlasov equation plus cooling-
diffusion Fokker-Planck term [6]. In the reference frame:
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where f, isthe beam phase density, f isits perturbation, w is
a deviation of the particle velocity from the beam velocity v,
My = M;(1/4* —1/~})~" isalongitudina mass of an ion of
the beam, M; = A; M, isitsmass, A; and Z; are the mass and
charge numbers, )| isthecooling rateand d) isthe diffusion co-
efficient. Assuming the oscillationsto be mainly determined by
the space charge impedance I, the corrections introduced by
the cooling, temperature (Landau damping) and the impedance
ZII can be found as perturbations. It gives the following disper-
sionrelation for longitudinal coherent modes in acoasting beam

[7]:
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where p = N/C isalinear density of the beam.

Accordingto Eq.(7), instabilitiescaused by thered part of the
impedance ReZ!l can be avoided due to the Landau damping or
due to cooling. Inthefirst case longitudina temperature of the
beam must be sufficiently high. Assuming the distributionfunc-
tion to be Gaussian, fo(u) = (271'sz)_1/2 exp(—u?/2Aw?),
the stability condition can be expressed as:

ul ul [
L oy (/7" 127
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Thefactor | Z!l| /ReZ !l isusually pretty large. Therefore the sta-
bility condition (8) is amost independent on the impedance. In
terms of atemperature it can be expressed as:

(8)

s 7l (k) = L(pA) Zi L
T2 TaK) =002 5
where the factor f; ~ 1 reflects the weak logarithmic depen-
dence on the impedance. For instance, longitudinal oscillations
inalpuA beamof Lit! [8] with8 = 0.06, L = 4, will be
Landau-damped if itslongitudinal temperature 71l > 7/l = 1.6
K . For 1 mA beam of Cf;’ at TSR with 3 = 0.041 the thresh-
old temperature calculated from (9) with L = 5, fz = 1.51is
TtlLL = 2-10*K, whichisrather close to the experimental value
of Tl = 3. 10*K.

Thislimit can be removed if the cooling rate is high enough:
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If thisis satisfied for all the wavenumbers £ = n/R, the oscil-
lations are stable even without Landau damping. For agiven
therestriction (10) can betreated as a safe conditionimposed on
the impedance Z!l. Assuming A = 10s~!, for the Li}' beam
it gives: ReZll < 10 KQ.

A > 20, = (20)

B. Transverse Oscillations

Transverse oscilations of ions of a coasting beam can be de-
scribed by the foll owing equation:

itwir—w? (x—z) = (proc/) / Wi (s—s" )z (s')ds' A, z,

(11)
where z,  are transverse coordinates of an individua ion and a
center of mass of thebeam, & = dz/dt = (—iQ 4+ inwonw/v)x
is a transverse velocity of theion, n = 72 — 777, wis
a deviation of alongitudina velocity from its average value v,
wp = weo + Ewow/v is abetatron frequency with a chromatic-
ity accounted, p isalinear density of the beam, w?, describes a
space charge defocusing, W, (s) isatransverse wake function,
A, isatransvercecooling rate. From here, adispersion equation
follows:

:/ dIdw f1o(1) fijo(w) (@i (1) + wZ)
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where w? = 2iprocwoy™ (21 /Z0), I is a transverse ac-
tion, fro(/), fio(w) are unperturbed distribution functions,
JdIdwfio(I)fjo(w) = 1. For smal Landau damping and
cooling corrections, the equation (12) can be solved:

Q= —(wpo + AQe)n/|n| — AL /2 — 461
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Here Aw;.(I) = w?.(I)/(2wpo) is an incoherent space charge
betatron shift for ions with the action I, Aw;, = AQrwg =
Aw,(0) isthe Ladlett shift.

The Landau damping term d; is seen to be lost when the
incoherent and coherent frequencies are separated more than a
width of the distribution. Typicaly, a low relativism Awyp >
A£2., which follows the stability threshold for the Ladlett shift
[9], [10]. Actuadly, the situation is similar to the logitudina
case, wherethe space charge separates vel ocitiesof particlesand
waves, aso causing the threshold to be amost independent on
the ring impedance (Eq.9).

The Landau decrement §; can be asymptotically calculated
from Eq.(13) for athermal equilibrium, with some longitudinal
and transverse temperatures 7j; = M Aw?, T} :

AQL v
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From here, the stability condition for the Landau suppression of
the instability can be presented as:

Aw HhAw
AQrL §Achz0.2|—£+|n|n|Tln3/2( 1 L), (15)

n

where A, = ImAQ.. The limit value for the Ladett tune
shift is determined by the mode with the minimum longitudinal
number n, which has the increment higher than cooling decre-
ment: A, > A, /2. Dueto alarge argument of the logarithm
(~ 10°+107), theresult isa most unsensitiveon it; thelogarith-
mic factor itself is alarge constant: In®/2(...) ~ 50 = 60. As-
suming the cooling rate to be smaller than long wave (n < |£])
increments, the threshold Ladl ett shift is found:

AQ: = 10|¢]Aw/v. (16)
Taking as an example typica for TSR at the threshold Aw/v =
1072 and |¢| = 5, it gives AQ, = 0.05, which is close to
the observed value[11]. Therestriction on the Lad ett tune shift
(15) is removed for sufficiently low currents, with the cooling
rate higher then coherent increments: A, > 2A. For the men-
tioned Li beam, with A\ | = 1s~!, it givesthe restriction for the
impedance: ReZ+ < 15MQ/m.

V. CONCLUSIONS

The concept of the storage ring impedance, developed mainly
for ultrarelativistic beams cannot be at once applied to low and
moderate energy cases. The reason is that the causality prin-
ciple for wake fields generdly is not valid here, which cause
an exponential damping of impedances above a certain thresh-
old. The approach suggested givesthe possibility tofind thewall
impedance for an arbitrary energy if itsultrarelativisticvaueis
known. At low energies, 3 < 0.5 + 0.8 the broad-band wall
impedance is exponentially damped and too weak to cause in-
stabilitiesof acooled beam. A narrow-band impedance could be
dangerousif itseigenfrequency w, israther low: w,.b/v < 1.

Space charge of a beam switches-off the Landau damping,
above certain thresholdes, for both longitudinal and transverse
oscillations. For typical cooling rates, low current (1A ) beams
could be cooled below the threshol ds.
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