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Abstract

Properties of the wall impedance of a storage ring are studied
for a low relativism, 
 � 1 � 1: Both broad and narrow band
impedances are shown to be damped at low energies, the damp-
ing factors are found. Coherent motion of a coasting beam is dis-
cussed; Landau decrements are calculated.

I. INTRODUCTION
The impedance of a vacuum chamber [1] depends on a beam

velocity. This dependence vanishes in an ultrarelativistic limit,
where all the fields excited by a point charge lag behind it, which
is referred to as the causality principle for wake fields, see e. g.
[2]. This causality principle does not work for low and moder-
ate energies, where the relativistic factor 
 ' 1: the Coulomb
field is not here a �-function of a longitudinal coordinate, but
smoothly increase and decrease during the time � ' r=
v,
where r is an impact parameter. It follows that a broad band
wall impedance Z(!) is exponentially depressed at frequencies
! � 
v=b, where b is an aperture radius. A pure space charge
impedance is the only remaining at these frequencies, but it does
not lead to instabilities of itself. A narrow band impedance is
shown to be depressed to a lesser extent, then the broad band one,
due to a rather sharp boundary of the eigenfield at the entrance,
�z = b=2:4:

A coherent motion of coasting beam is discussed; the Landau
damping of both longitudinal and transverse oscillations is lost
when a space charge of the beam separates coherent and incoher-
ent frequencies [6], [9], [10]. Longitudinal and transverse Lan-
dau decrements are asymptotically calculated here for a thermal
equilibrium.

II. IMPEDANCE DAMPING FACTORS
A. Wall Resistivity

Assuming the field dependence on the longitudinal coordi-
nate and time as eik(z�vt), Maxwell’s equations reduce to the
Poisson equation for a longitudinal electric field Ez excited
by a charge linear density perturbation. Applying Leontovich
boundary condition at the resistive wall surface, [3], Ez(b) =p
�ikv=(4��)B�; the electric field Ez in a perfectly conduct-

ing tube and its perturbation ~Ez due to a finite walls conductivity
� [4] can be found.

The fields Ez; ~Ez and the current perturbation J are con-
nected by corresponding impedances, EzC = �ZkJ; ~EzC =

� ~ZkJ , where C is the ring circumference, which gives:

Zk(kv)

C
=

2ikL


2v
;

~Zk(kv)

C
=

1� ik=jkj
2�b��

f(�) (1)

where � = c=
p
2��kv is the skin depth, L = ln (rmax=a) +

1=2 is the logarithmic factor with rmax = min(b; 1=k); a is

the beam radius. Here a high frequency damping factor f(�) has
been introduced:

f(�) = �
K1(�)I0(�) �K0(�)I1(�)

I20 (�)
=

�
1; if �� 1

�e�2�; if �� 1
(2)

Km(�); Im(�) are modified Bessel functions.
The transverce resistive-wall impedance ~Z? is found by the

similar way; for any relativism ~Z? = 2 ~Zk=(kb2):

The real part of ~Zk(�) achieves its maximum at the dimen-
sionless wavenumber � = 0:43;

Re ~Zkmax = 0:24Z0(R=b)
p

v=(2��b);

Z0 = 4�=c = 377
: Assuming � = 0:4; � = 1:3 �
1016s�1; R = 10m; b = 5 cm; it gives Re ~Zkmax = 3
:

B. Broad Band Impedances

The resistive wall impedance ~Zk (Eq.1) can be represented in
terms of its ultra relativistic value ~Z

k

ur and the damping factor
f(�) (Eq.2) :

~Zk(!) = ~Zkurf(�); � = !b=(
v): (3)

The factor f(�) reflects the strong decrease of the incident field
energy flux at the distance r = b as � exp(�2kb=
): The
incident field of the beam, damped near the walls as f1=2 �
exp(�kb=
); produces proportionally to itself a perturbation of
the surface current density. The energy loss which is a product of
the field ~Ez and the current induced, is damped quadratically, as
f1=2 � f1=2 = f ' � exp(�2kb=
): The energy loss is propor-
tional to the real part of the impedance, so the last one is damped
in the same way.

Thus, Eq.(3) follows from the symple physical consideration,
which is the same for all the types of the wall imperfections. The
only importance is that field perturbations introduced by these
imperfections are small, which practically can be applied to all
broad band wall impedances.

The real part of the broad band impedance has non-zero value
only above the low frequency cut-off: ! � !c: For the circular
cross-section of the vacuum chamber !c = 2:4c=b: Taking into
account that ! = kv, the damping factor f near the lowest pos-
sible frequency (cut-off) occurs to be:

f ' � exp (�4:8=(
�))
So, the broad band impedance of wall imperfections (disconti-
nuities, shallow cavities, irises, etc.) cannot play any role for in-
sufficiently relativistic particles. Even for � = 0:4; the damping
factor f = 2 � 10�5 ; which makes the broad band impedance
completely negligible.

For a transverse broad band impedance, ~Z? the low energy
suppression is actual even to the grater extent. The cut-off fre-
quency for unsymmetrical modes of the vacuum pipe !?c is sig-
nificantly higher, than for symmetrical ones, !?c = 3:8c=b for



the circular pipe, which gives the folowing transverse broad band
damping factor:

~Z?(!) = ~Z?ur(!)f?(�); f?(�) ' exp(�7:6=(
�)): (4)

C. Narrow Band Impedances

Another possibility for energy loss and for instabilities is con-
nected with the radiation in low frequency (! < !c) modes
of some elements of the vacuum chamber. At the resonance,
the impedance is pure real, it achieves here its maximum, the
shunt impedance Rs(v). The velocity dependence of the shunt
impedance is determined by a transite time factor T (v) (see, e.
g. [5]):

Rs(v) = Rs(c)

����T (v)T (c)

����
2

; T (v) =

Z 1

�1

E(z)e�i!z=v)dz;

(5)
where E(z) is an arbitrary normalized eigenfield distribution. It
follows the estimation:

Rs(v)

Rs(c)
= [� sin(!g=(2v))= sin(!g=(2c))]2

�
� 

sinh(� )

�2

;

where  = !g=v; g is a gap length, � = �!�z=v; lon-
gitudinal variation of the eigenfield in the gap assumed to be
� !=v. The f:::g- factor reflects an influence of a width of the
field boundary �z = b=2:4 at the entrance and exit of the nar-
row band element.

III. COHERENT STABILITY
A. Longitudinal Oscillations

The dispersion relation can be found from
the kinetic equation, which is the Vlasov equation plus cooling-
diffusion Fokker-Planck term [6]. In the reference frame:
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where f0 is the beam phase density, f is its perturbation, w is
a deviation of the particle velocity from the beam velocity v;
Mk = Mi(1=


2 � 1=
2t )
�1 is a longitudinal mass of an ion of

the beam, Mi = AiMp is its mass, Ai and Zi are the mass and
charge numbers, �k is the cooling rate and dk is the diffusion co-
efficient. Assuming the oscillations to be mainly determined by
the space charge impedance Zk; the corrections introduced by
the cooling, temperature (Landau damping) and the impedance
~Zk can be found as perturbations. It gives the following disper-
sion relation for longitudinal coherent modes in a coasting beam
[7]:
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(7)
where �� = N=C is a linear density of the beam.

According to Eq.(7), instabilitiescaused by the real part of the
impedance Re ~Zk can be avoided due to the Landau damping or
due to cooling. In the first case longitudinal temperature of the
beam must be sufficiently high. Assuming the distribution func-
tion to be Gaussian, f0(u) = (2��w2)�1=2 exp(�u2=2�w2),
the stability condition can be expressed as:

u2
k

�w2
� 2 ln

 r
�

2

u3
k

�w3

jZkj
Re ~Zk

!
(8)

The factor jZkj=Re ~Zk is usually pretty large. Therefore the sta-
bility condition (8) is almost independent on the impedance. In
terms of a temperature it can be expressed as:

T k � T
k

th(K) = 0:02
I(�A)ZiL

�(1 � 
2=
2t )
fZ (9)

where the factor fZ � 1 reflects the weak logarithmic depen-
dence on the impedance. For instance, longitudinal oscillations
in a 1 �A beam of Li+17 [8] with � = 0:06; L = 4, will be
Landau-damped if its longitudinal temperature T k � T

k

th = 1:6

K . For 1 mA beam of C+6
12 at TSR with � = 0:041 the thresh-

old temperature calculated from (9) with L = 5; fZ = 1:5 is:
T
k

th = 2 � 104 K, which is rather close to the experimental value
of T k = 3 � 104K.

This limit can be removed if the cooling rate is high enough:

�k > 2�k =
uk�Re ~Zkk
LRZ0

(10)

If this is satisfied for all the wavenumbers k = n=R, the oscil-
lations are stable even without Landau damping. For a given �k
the restriction (10) can be treated as a safe condition imposed on
the impedance ~Zk. Assuming �k = 10 s�1, for the Li+17 beam
it gives: Re ~Zk < 10 K
:

B. Transverse Oscillations

Transverse oscilations of ions of a coasting beam can be de-
scribed by the following equation:

�x+!2bx�!2sc(x��x) = (��r0c
2=
)

Z
W?(s�s0)�x(s0)ds0��? _x;

(11)
where x; �x are transverse coordinates of an individual ion and a
center of mass of the beam, _x = dx=dt = (�i
+ in!0�w=v)x

is a transverse velocity of the ion, � = 
�2 � 
�2t ; w is
a deviation of a longitudinal velocity from its average value v;
!b = !b0 + �!0w=v is a betatron frequency with a chromatic-
ity accounted, �� is a linear density of the beam, !2sc describes a
space charge defocusing, W?(s) is a transverse wake function,
�? is a transverce cooling rate. From here, a dispersion equation
follows:

1 =

Z
dIdwf?0(I)fk0(w)(!

2
sc(I) + !2c )

(
 � n�!0w
v
+ i

�?

2
)2 � (!b0 + !0�

w

v
)2 + !2sc(I)

;

(12)



where !2c = 2i��r0c!0

�1(Z?=Z0); I is a transverse ac-

tion, f?0(I); fk0(w) are unperturbed distribution functions,R
dIdwf?0(I)fk0(w) = 1: For small Landau damping and

cooling corrections, the equation (12) can be solved:


 = �(!b0 +�
c)n=jnj � i�?=2� i�?

�
c = i
��r0c


Qb

Z?

Z0
; Qb =

!b0

!0

�? = ��!L
R
dIdwf?0(I)fk0(w)�!sc(I)�

��(�!sc(I) + Re�
c � �!0w=v + jnj�!0w=v):
(13)

Here �!sc(I) = !2sc(I)=(2!b0) is an incoherent space charge
betatron shift for ions with the action I; �!L = �QL!0 =

�!sc(0) is the Laslett shift.
The Landau damping term �? is seen to be lost when the

incoherent and coherent frequencies are separated more than a
width of the distribution. Typically, at low relativism �!L �
�
c; which follows the stability threshold for the Laslett shift
[9], [10]. Actually, the situation is similar to the logitudinal
case, where the space charge separates velocities of particles and
waves, also causing the threshold to be almost independent on
the ring impedance (Eq.9).

The Landau decrement �? can be asymptotically calculated
from Eq.(13) for a thermal equilibrium, with some longitudinal
and transverse temperatures Tk = M�w2; T? :

�? = �

r
2

3
�!L p

2=3 exp(�3p2=3); p = �QL

j � � + jnj�j
v

�w
:

(14)
From here, the stability condition for the Landau suppression of
the instability can be presented as:

�QL � �Qth � 0:2j � � + jnj�j�w
v

ln3=2
�
5�!L

�n

�
; (15)

where �n = Im �
c. The limit value for the Laslett tune
shift is determined by the mode with the minimum longitudinal
number n; which has the increment higher than cooling decre-
ment: �n > �?=2: Due to a large argument of the logarithm
(� 105�107), the result is almost unsensitive on it; the logarith-
mic factor itself is a large constant: ln3=2(:::) � 50 � 60. As-
suming the cooling rate to be smaller than long wave (n � j�j)
increments, the threshold Laslett shift is found:

�Qth � 10j�j�w=v: (16)

Taking as an example typical for TSR at the threshold �w=v =

10�3 and j�j = 5; it gives �Qth = 0:05; which is close to
the observed value [11]. The restriction on the Laslett tune shift
(15) is removed for sufficiently low currents, with the cooling
rate higher then coherent increments: �? > 2�: For the men-
tioned Li beam, with �? = 1s�1, it gives the restriction for the
impedance: ReZ? < 15M
=m:

IV. CONCLUSIONS
The concept of the storage ring impedance, developed mainly

for ultrarelativistic beams cannot be at once applied to low and
moderate energy cases. The reason is that the causality prin-
ciple for wake fields generally is not valid here, which cause
an exponential damping of impedances above a certain thresh-
old. The approach suggested gives the possibilityto find the wall
impedance for an arbitrary energy if its ultrarelativistic value is
known. At low energies, � � 0:5 � 0:8 the broad-band wall
impedance is exponentially damped and too weak to cause in-
stabilities of a cooled beam. A narrow-band impedance could be
dangerous if its eigenfrequency !r is rather low: !rb=v � 1:

Space charge of a beam switches-off the Landau damping,
above certain thresholdes, for both longitudinal and transverse
oscillations. For typical cooling rates, low current (�A ) beams
could be cooled below the thresholds.
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