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Abstract
The formulae for the deflecting rf forces have been

derived for the train of charged bunches, traversing a rf
cavity. These forces  originate from the deflection action of
non symmetrical modes excited by the misalined  bunches,
the infinite set of the cavity eigen modes being taken into
account. Various dependencies are explored, including the
effect of "mode saturation" and non linearity of rf deflecting
gradient,  followed by the appropriate plots.

1. INTRODUCTION

High intensity proton linacs to be used in future facilities
(for example, neutron spallation sources, nuclear waste
transmutation etc.) assume very low beam losses to make it
possible to handle such accelerators. This in turn puts
forward the problems not essential for relatively low intensity
machines but of vital importance for new generation of
accelerators, the formation and evolution of beam halo being
among them. To this end new approaches to old problems
seem to be reasonable to investigate anomalies in beam
dynamics. Cumulative beam instability in rf linacs [1-4]
might be one of the possible mechanism contributing to beam
losses. Single mode approximation traditionally used in
cumulative beam break up theories can not be justified in non
resonance case, if the process takes place below the
regenerative threshold. Under such conditions the choice of
any particular mode responsible for beam - cavities
interactions becomes completely uncertain. Many of excited
deflecting modes may contribute to resulting field and
deflecting gradient as well, and multi mode approach
suggests itself.

The paper generalises the results had been obtained in [5].
The general expression for the deflecting gradient for any
bunch from the bunch train traversing  the cavity is derived.
Linear approximation is not used any more, because non
linear character of the beam interaction with radial modes is
the principle consequence of multi mode approach,
determining many features of deflecting forces. Numerical
calculations are performed for cylindrical resonator, followed
by various plots to illustrate quantitatively multi  mode beam
- cavity interaction.

2. THE EQUATIONS OF BEAM - CAVITY
INTERACTION

Our aim is the derivation of the expression for deflecting
electromagnetic force produced by the charged bunches train
in a cavity and experienced by the particles forming this
train. It is assumed in the analysis below that there is not
more than one bunch in the cavity at any moment. The
influence of cavity holes on field distribution is neglected . It

is assumed also that the beam is frozen in transverse direction
inside cavity, so that the particle orbit is not substantially
affected in its passage through the cavity. In such an
approximation  the electromagnetic field inside cavity acts on
a particle moving with the velocity v  with the average
transverse force [6,7]:
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where A
→

 is vector potential and the integration is performed
along the cavity of length d. (MKS units are used throughout
this work.) Here, x is particle transverse displacement from
cavity axis, x-axis of the basis used is assumed to coincide
with it; z denotes the particle coordinate along the
longitudinal axis,τ  is the moment at which particle with
charge e enters the cavity.

Following  [8]  let us represent the vector potential in (1)

in the form of infinite sum of eigenvectors A r
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with the time dependent amplitudes q tλ ( )  satisfying the
differential equation
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and  with A
→

λ  satisfying the condition div A
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=λ 0 as well as
the Helmholtz equation:
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Here,  ωλ  and Qλ  are frequency and quality factor of a mode
respectively,  ε

0
  is electrical permeability of free space, c  is

the light velocity. The solution of (3,4) for the bunch  of the
radius a  and length l with uniform charge q  distribution
within  it can be represented in the form:
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where D is the area occupied by the beam in transverse plane,
and V is the cavity volume. The formula is valid for the
moment when the bunch has left the cavity. After passages N
bunches, following with the time interval T, the induced field
acts on the particles within N+1 bunch (at the distance ∆ l

from the bunch head) with the force:
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where the following designations are used:
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For steady state case formula (6) is turned to
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3. NUMERICAL RESULTS FOR CYLINDRICAL
CAVITY

We shall use cylindrical cavity to explore quantitatively
the influence of the  beam and cavity parameters on rf
gradient for steady case state. For such a cavity the
components of eigenvectors of  deflecting TM modes are:
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and formula for rf gradient g f evx
rf

= /  looks like
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where I is the average beam current,  I q T= / ,
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Here,  lower case Greek letters designate  normalised values,
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null of Bessel function of the n-th order  J xn ( ), β = v c/ ,
k p d k R pz c n m= = =π ν/ , / , , ,...,, 0 1  m, n=1,2... , and



J
p

A B C

p

pm p

n m

n m n m n m,

,

, , ,
( )

,

,
= + + ×

=

≠













π ρ

δν
π δ

3 2 2

2
2

1 0

1

2
0

A J x xdx B
J

x
dx

C J x xdx k
p

n m n n m

n

n m n n m p

n m

n m n m

n m

, ,

, , ,

,

( ) , ,

( ) , ,

, ,

,

= ′ =

= = +

∫ ∫

∫

2

0

2

0

2

0

2

2

2 2

2

ν ν

ν
ν

ρ

π

δ

         (15)

20 40 60 80 100
150

100

50

0

n

G

Fig. 1. Dependence of rf gradient on the number of modes.
Q=100, d =0.5, r = 0.383, a = 0.002, x = 0.005, h = 0, q = 0.

As numerical calculations have shown, the quadruple and
higher symmetry modes  contribute to deflecting gradient  as
small perturbations to the value, determined by dipole modes.
Fig. 1 represents the dependence of resulting gradient on the
modes number, n  being equal to maximum value of radial
and longitudinal modes in the sum  (13). The affect of "mode
saturation" is seen from the plot. The next plot (Fig. 2)
illustrates the variation of rf gradient along the bunch,
calculated for saturation case. Fig. 3 demonstrates strong
dependence of gradient on beam offset, originating from
contribution of high orders radial modes to resulting force.
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Fig. 2. Rf gradient variation along the bunch. Q =100, d =0.5,  
r = 0.383, a = 0.002, x = 0.005, h = 0.05.
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Fig. 3. Dependence of deflecting gradient on bunch
displacement. Q=500, d =0.5, r=0.383, a =0, h = 0.05, q =0.

4. CONCLUSION

Multi mode approach has been demonstrated to result in
new features of beam cavity interaction in rf accelerators. In
particular, these are  strong dependence of deflecting gradient
on particle location within a bunch  as well as non linearity
of deflecting force that manifests itself as the radial
dependence of rf gradient.
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