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|. INTRODUCTION

To clean abeam of itsexcessivetail particles, one often usesa
collimator. If the beam intensity ishigh enough or if thebeamis
brought too closeto thecollimator, however, thewakefieldsgen-
erated by the beam-collimator interaction can cause additional
beam tailsto grow, thus defeating, or even worsening the beam-
tail cleaning process.

The wake field generated by a sheet beam moving past a con-
ducting wedge has been obtained in closed form by Henke us-
ing the method of conforma mapping.[1] This result is applied
in the present work to obtain the wake force and the transverse
kick received by a test charge moving with the beam. For the
beam to be approximated as sheet beams, it is assumed to be flat
and the collimator isassumed to have an infiniteextent in theflat
dimention. Wewill derivean exact expression for thetransverse
wakeforce delivered to particlesin the beam bunch. Implication
of emittance growth as a beam passes closely by a collimator is
discussed.

We consider two idealized wedge geometries. Section 2 is
when thewedge hasthe geometry as adisrupted beam pipe. Sec-
tion 3iswhen it islike a semi-infinite screen. Unfortunately we
have not solutionsfor more realistic collimator geometries such
aswhen it istapered to minimize the wake field effects. Our re-
sults however should till serve as pessimistic limiting cases.

An interesting opportunity is offered by our exact calculation
of the wake fields: it can be used to confront the diffraction
model[2,3,4] used to estimate the high frequency impedance of a
cavity structure. It is shown that the field pattern, as well as the
impedance, agree with those obtained by the diffraction model
in appropriate limits.

We would like to thank K. Bane, R. Warnock, and P. Wilson
for their help.

I1. DISRUPTED PIPE

Consider ameta wedge and arod beam as shown in Fig.1(a).
Both the wedge and the beam are considerd to be infinitely long
in the z-direction. The beam has aline charge density Ao and is
assumed to move with the speed of light in the z-direction. Fol-
lowing [1], we define
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The parameters have theranges0 < ¢ < 27— 6,1 > R > 0,
m>6>0andl > A > % We have shown the coordinatesin
Fig.1(a).

In the region » < ¢t (inside the "light cylinder”), the elec-
tromagnetic field components are found by an extension of the

analysisof [1] to be
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where @ = (% — R)?sin” 7\ + [(% + R) cos mA — 2 cos A¢]2.
The fields are independent of the y-separation between the rod
beam and the wedge.

Consider atest charge e which follows behind the rod beam
at adistance D (D > 0) and has a vertical distance Y from the
edge of thewedge (Y > 0), as shown in Fig.1(b). Let the test
charge move with the beam at the speed of light. The Lorentz
force seen by the test charge has the components

Fp=eb;, Fy=eE,—eB,, and F,=0 ©)]
We want to calculate the integrated longitudinal and transverse
impulses received by thetest charge as it passes by the wedge.

When ¢t — oo, thetest charge sees £, — 1/+/ct. It follows
that the longitudinal impulse received by the test charge isinfi-
nite. This means the beam loses an infinite amount of energy to
generate the wake field. The infinity does not go away with afi-
nite wedge angle 8, or with afinite bunch length in «; it comes
from the infinite bunch widthin z.

Thetotal transverseimpul se, on the other hand, converges and
givesthe surprisingly simple result
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Thetransverse impulseisindependent of Y or D. Itisevenin-
dependent of the wedge angle d.

If the beam has asurface charge density X (), itswake effects
can be obtai ned from the rod beam result by superposition. Con-
sider a beam particle at location = relative to the beam center.
It receives atransverse impulse from dl particlesin front of it.
Thus
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The previous results become simpler for the case of infinitely
thinwedgewhen ¢ = 0 (or A = 1):
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The sign of the Lorentz force is such that the test charge aways

sees aretarding force (F#, < 0). Also the transverse deflecting
force deflects it toward the plate (£, > 0).

I1. SEMI-INFINITE SCREEN

The arrangement of the wedge and arod beam is now shown
inFig.2. Wehaved < I andi < A < 2. Forarod beam, inside
thelight cylinder, the field componentsare found by an extention

of [1] tobe
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The transverse impulse as seen by a test charge shown in
Fig.2(b) isfound to be
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Againthisisindependent of Y, D, and §. Note Eq.(9) isexactly
half of Eq.(4). It also followsthat for abeam with surface charge
density (), aparticle at position = receives atransverse kick
which ishaf od Eq.(5).

V. GENERAL WAKE CONSIDERATIONS

Thefact that the integrated transverse wake force isindepen-
dent of the transverse and the longitudinal locations of the test
charge hasitsoriginin the Maxwell equations. By our assump-
tions, we know that (a) the beam current density jandthe charge
density p arerelated by j = cpi, (b) theonly non-vanishingfield
and force components are B., E,, £y, I, and F, () &l quan-
tities do not depend on z, and (d) the integrated field and force
components&, B, F = f(E, B, F)d(ct) depend on z and ¢ only

through « — ¢t. By linearly combining the Maxwell equations
into equationsin terms of eBB,, F., Fy, and F,, wefind
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Thismeans F,, can not dependonz or y, i.e. ithastobe constant.
Also, F,, doesnot depend ony, althoughit candependonz. This
conclusion is valid independent of the boundary conditions, as
long as the boundary isindependent of the z-coordinate.

It can also be shown from a general wake consideration [5]
that the wake function does not depend on Y. Observing that
thewakeintegral scaleswiththeratio of Y and D, it can be con-
cluded that the wake integral must also not depend on D. The
specific value of thewake integral then followseasily by setting
Y=0and¢ = 7.

V. THE DIFFRACTION MODEL

A diffraction model has been proposed and used to estimate
the high frequency impedance of a cavity structure in the beam
pipe[2,3,4] Consider a cylindrical beam pipe of radius b and
a cavity structure of total gap length ¢, and a beam current ~
e (#=ct) Thismodel suggests: (a) Thewakefield created asthe
beam passes the entrance edge of the cavity populatesmainly the
regionintheforward directionintothe open cavity space. By the
time the wake field reaches the exit edge of the cavity, theradia
spread of theregionis

Ay ~\/g/k

(b) The longitudinal impedance at high frequenciesis given by
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where 7, = 4% =377 Q.

Our resultsoffer an opportunity to check thediffraction model
with exact Maxwell solutions. (Our result isnot arigorous proof
of the diffraction model because we do not have a cylindrica
geometry.) Consider a surface charge beam with X(z,t) =
Yoehr=ct) 'which moves with the speed of light c¢. The wake
fields can be obtained from the rod-beam results by superposi-
tion. Take the disrupted beam case with 6 = 0 for example. We
have
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Significant contributionsto the integrals (13) come from the re-
gionu < Ili_l This in turn means that the components B, and

E, are strong when ¢ iscloseto 7 with
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Equation (14) inturn givesthe diffraction pattern (11).



The component F,., however, is somewhat different. It does
not have the diffraction pattern (11). In fact,
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The magnitude of £, however issmaller than those of B, and
E, by afactor of |k|r > 1.

One can estimate the high frequency impedance as follows.
Consider atest charge which passespositionxs = —D attimet =
0 with avertical separation Y from the wedge. Assume the test
charge move in the z-direction at the speed of light. The energy
loss of the test charge as it traverses the cavity can be estimated
as(assumeg > D, g > Y, |klg > 1)

g .
Al / det)eEy = —4, /%[1 + sgn(k)ileSoe P (16)
0

Although (16) is for a geometry with infinite z-dimension, the
impedance of a cylindrical cavity can be estimated by
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which isidentical to (12). One can show that (12) applies dso
to arbitrary 6. The diffraction model istherefore re-established.
Further exploring of more detailsof thediffraction model should
be possible using the exact solutions given in the previous sec-
tions.
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VI. EMITTANCE GROWTH

We now estimate the emittance growth when aflat beamisbe-
ing collimated by ametal collimator. Let the horizonta distribu-
tion of the beam be uniform with a total width L,. We assume
the vertical beam dimensionis< L., and it isthe vertica di-
mension which is being collimated. The vertica separation be-
tween the flat beam and the edge of the collimator is assumed to
be « .. Weignoretheresistivewall effect here[6,7]

Consider the case of a semi-infinite screen wedge. Let the sur-
face charge density of the beam be written as ©(z) = ¥<¢p(z),
where N isthetota number of particlesin the beam bunch, and
ffooo dzp(x) = 1. Thekick angle received by aparticlein the
beam located at longitudinal position « is, according to Eq.(9),

N oQ
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where r, isthe classical radius of the particle, v isthe Lorentz

energy factor.
The maximum kick isreceived by particlesin thetrailing tail

r = —oo. Independent of the details of the longitudinal distri-
bution p(z), thiskick isgiven by
wNrg
L,y
The growth in the effective emittance of the beam is aso inde-
pendent of the details of p(x):
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Figure1. A rod beam passing a disrupted pipe wedge.
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Figure 2. A rod beam passing a semi-infinite screen wedge.

where 3 isthe 3-function at the collimator.

As anumerical example, take an electron beam bunch with
N =5 x10'"% L, = 1 mm, and~ = 10°. We assume that the
vertica beam height and the vertical distance of the beam from
the collimator are <« 1 mm. If we further assume the collima-
tor has a semi-infinite screen geometry, then thewake field kick
delivered to atrailing particlein the bunch is4 prad. If 3 = 10
m, the effective emittance growth isfound to be 0.6 x 10~1% m-
rad, which corresponds to a growth of normalized emittance of
0.6 x 10~° m-rad. Asmentioned in Section 1, this can be detri-
mental for a high quality, low-emittance beam.
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