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I. INTRODUCTION

To clean a beam of its excessive tail particles, one often uses a
collimator. If the beam intensity is high enough or if the beam is
brought too close to the collimator, however, the wake fields gen-
erated by the beam-collimator interaction can cause additional
beam tails to grow, thus defeating, or even worsening the beam-
tail cleaning process.

The wake field generated by a sheet beam moving past a con-
ducting wedge has been obtained in closed form by Henke us-
ing the method of conformal mapping.[1] This result is applied
in the present work to obtain the wake force and the transverse
kick received by a test charge moving with the beam. For the
beam to be approximated as sheet beams, it is assumed to be flat
and the collimator is assumed to have an infinite extent in the flat
dimention. We will derive an exact expression for the transverse
wake force delivered to particles in the beam bunch. Implication
of emittance growth as a beam passes closely by a collimator is
discussed.

We consider two idealized wedge geometries. Section 2 is
when the wedge has the geometry as a disrupted beam pipe. Sec-
tion 3 is when it is like a semi-infinite screen. Unfortunately we
have not solutions for more realistic collimator geometries such
as when it is tapered to minimize the wake field effects. Our re-
sults however should still serve as pessimistic limiting cases.

An interesting opportunity is offered by our exact calculation
of the wake fields: it can be used to confront the diffraction
model[2,3,4] used to estimate the high frequency impedance of a
cavity structure. It is shown that the field pattern, as well as the
impedance, agree with those obtained by the diffraction model
in appropriate limits.
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II. DISRUPTED PIPE

Consider a metal wedge and a rod beam as shown in Fig.1(a).
Both the wedge and the beam are considerd to be infinitely long
in the z-direction. The beam has a line charge density �0 and is
assumed to move with the speed of light in the x-direction. Fol-
lowing [1], we define
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The fields are independent of the y-separation between the rod
beam and the wedge.

Consider a test charge e which follows behind the rod beam
at a distance D (D > 0) and has a vertical distance Y from the
edge of the wedge (Y > 0), as shown in Fig.1(b). Let the test
charge move with the beam at the speed of light. The Lorentz
force seen by the test charge has the components

Fx = eEx; Fy = eEy � eBz ; and Fz = 0 (3)

We want to calculate the integrated longitudinal and transverse
impulses received by the test charge as it passes by the wedge.

When ct !1, the test charge sees Ex ! 1=
p
ct. It follows

that the longitudinal impulse received by the test charge is infi-
nite. This means the beam loses an infinite amount of energy to
generate the wake field. The infinity does not go away with a fi-
nite wedge angle �, or with a finite bunch length in x; it comes
from the infinite bunch width in z.

The total transverse impulse, on the other hand, converges and
gives the surprisingly simple result

c�py(Y;D) =
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Fyd(ct) = 2�e�0 (4)

The transverse impulse is independent of Y or D. It is even in-
dependent of the wedge angle �.

If the beam has a surface charge density�(x), its wake effects
can be obtained from the rod beam result by superposition. Con-
sider a beam particle at location x relative to the beam center.
It receives a transverse impulse from all particles in front of it.
Thus

c�py(x) = 2�e
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The previous results become simpler for the case of infinitely
thin wedge when � = 0 (or � = 1
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The sign of the Lorentz force is such that the test charge always
sees a retarding force (Fx < 0). Also the transverse deflecting
force deflects it toward the plate (Fy > 0).

III. SEMI-INFINITE SCREEN

The arrangement of the wedge and a rod beam is now shown
in Fig.2. We have � < �

2
and 1

2
� � � 2

3
. For a rod beam, inside

the light cylinder, the field components are found by an extention
of [1] to be
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The transverse impulse as seen by a test charge shown in
Fig.2(b) is found to be

c�py(Y;D) =

Z 1
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Fyd(ct) = �e�0 (9)

Again this is independent of Y , D, and �. Note Eq.(9) is exactly
half of Eq.(4). It also follows that for a beam with surface charge
density �(x), a particle at position x receives a transverse kick
which is half od Eq.(5).

IV. GENERAL WAKE CONSIDERATIONS

The fact that the integrated transverse wake force is indepen-
dent of the transverse and the longitudinal locations of the test
charge has its origin in the Maxwell equations. By our assump-
tions, we know that (a) the beam current density~j and the charge
density � are related by~j = c�x̂, (b) the only non-vanishingfield
and force components are Bz, Ex, Ey, Fx and Fy, (c) all quan-
tities do not depend on z, and (d) the integrated field and force
components ~E ; ~B; ~F �

R
(~E; ~B; ~F )d(ct) depend on x and t only

through x � ct. By linearly combining the Maxwell equations
into equations in terms of eBx, Fx, Fy, and Fz, we find
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This meansFy can not depend onx or y, i.e. it has to be constant.
Also,Fx does not depend on y, although it can depend onx. This
conclusion is valid independent of the boundary conditions, as
long as the boundary is independent of the z-coordinate.

It can also be shown from a general wake consideration [5]
that the wake function does not depend on Y . Observing that
the wake integral scales with the ratio of Y and D, it can be con-
cluded that the wake integral must also not depend on D. The
specific value of the wake integral then follows easily by setting
Y = 0 and � = �.

V. THE DIFFRACTION MODEL
A diffraction model has been proposed and used to estimate

the high frequency impedance of a cavity structure in the beam
pipe.[2,3,4] Consider a cylindrical beam pipe of radius b and
a cavity structure of total gap length g, and a beam current �
eik(x�ct). This model suggests: (a) The wake field created as the
beam passes the entrance edge of the cavity populates mainly the
region in the forward direction into the open cavity space. By the
time the wake field reaches the exit edge of the cavity, the radial
spread of the region is

�y �
p
g=k (11)

(b) The longitudinal impedance at high frequencies is given by
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Our results offer an opportunity to check the diffraction model
with exact Maxwell solutions. (Our result is not a rigorous proof
of the diffraction model because we do not have a cylindrical
geometry.) Consider a surface charge beam with �(x; t) =
�0e

ik(x�ct), which moves with the speed of light c. The wake
fields can be obtained from the rod-beam results by superposi-
tion. Take the disrupted beam case with � = 0 for example. We
have
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Significant contributions to the integrals (13) come from the re-
gion u < 1

jkj . This in turn means that the components Bz and
Ey are strong when � is close to � with

j� � �j <
s

2

jkjr (14)

Equation (14) in turn gives the diffraction pattern (11).



The component Ex, however, is somewhat different. It does
not have the diffraction pattern (11). In fact,
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The magnitude of Ex however is smaller than those of Bz and
Ey by a factor of jkjr� 1.

One can estimate the high frequency impedance as follows.
Consider a test charge which passes positionx = �D at time t =
0 with a vertical separation Y from the wedge. Assume the test
charge move in the x-direction at the speed of light. The energy
loss of the test charge as it traverses the cavity can be estimated
as (assume g � D; g � Y; jkjg� 1)
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Although (16) is for a geometry with infinite z-dimension, the
impedance of a cylindrical cavity can be estimated by

Z
k
0 (k) =

�E=e
2�bc�0e�ikD

(17)

which is identical to (12). One can show that (12) applies also
to arbitrary �. The diffraction model is therefore re-established.
Further exploring of more details of the diffraction model should
be possible using the exact solutions given in the previous sec-
tions.

VI. EMITTANCE GROWTH
We now estimate the emittance growth when a flat beam is be-

ing collimated by a metal collimator. Let the horizontal distribu-
tion of the beam be uniform with a total width Lz . We assume
the vertical beam dimension is � Lz, and it is the vertical di-
mension which is being collimated. The vertical separation be-
tween the flat beam and the edge of the collimator is assumed to
be� Lz. We ignore the resistive wall effect here.[6,7]

Consider the case of a semi-infinite screen wedge. Let the sur-
face charge density of the beam be written as �(x) = Ne

Lz

�(x),
where N is the total number of particles in the beam bunch, andR1
�1 dx�(x) = 1. The kick angle received by a particle in the

beam located at longitudinal position x is, according to Eq.(9),
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where r0 is the classical radius of the particle,  is the Lorentz
energy factor.

The maximum kick is received by particles in the trailing tail
x = �1. Independent of the details of the longitudinal distri-
bution �(x), this kick is given by

� � �y0(�1) =
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The growth in the effective emittance of the beam is also inde-
pendent of the details of �(x):

�� =

Z 1

�1
dx�(x)��y0

2
(x) =

1

3
��2 (20)

Metal
wedge

y

z x

Rod beam
v = c

r
φ���

���
θ

Rod beam

Test
charge 
e

4–95 7893A1

v = c

v = c
��
��

Y

D

r ct
φ

(a) (b)

Figure 1. A rod beam passing a disrupted pipe wedge.
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Figure 2. A rod beam passing a semi-infinite screen wedge.

where � is the �-function at the collimator.
As a numerical example, take an electron beam bunch with

N = 5 � 1010, Lz = 1 mm, and  = 105. We assume that the
vertical beam height and the vertical distance of the beam from
the collimator are � 1 mm. If we further assume the collima-
tor has a semi-infinite screen geometry, then the wake field kick
delivered to a trailing particle in the bunch is 4 �rad. If � = 10
m, the effective emittance growth is found to be 0:6� 10�10 m-
rad, which corresponds to a growth of normalized emittance of
0:6� 10�5 m-rad. As mentioned in Section 1, this can be detri-
mental for a high quality, low-emittance beam.
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