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I. INTRODUCTION

In attempts to minimize the impedance of an accelerator by
smoothing out its vacuum chamber, improvements are typically
first made by reducing the inductive part of the impedance. As
the inductance is reduced, however, the impedance becomes in-
creasingly relatively resistive, and as a consequence, the nature
of potential well distortion changes qualitatively. An inductive
impedance lengthens the bunch (above transition) while main-
taining more or less a head-tail symmetry of the bunch longi-
tudinal distribution. A resistive impedance does not change the
bunch length as much, but tends to cause a large head-tail asym-
metry.

The details of how potential well is distorted, particularly the
head-tail asymmetry, affects the mechanism of the longitudi-
nal microwave instability. Without a head-tail asymmetry, the
microwave instability mechanism relies on the coupling among
the ”azimuthal” modes. The coupling is strong but the mode
frequencies have to shift by large amounts (comparable to the
synchrotron frequency !s) before the instability threshold is
reached. With a head-tail asymmetry, the instability can be trig-
gered by coupling of the ”radial” modes. The coupling is weak,
but the mode frequency shifts involved are small (� !s). One
then may have the following situation: as one tries to minimize
the impedance, the impedance becomes resistive; the longitudi-
nal bunch shape acquires a large head-tail asymmetry; the na-
ture of microwave instability changes from a strong one (that in-
volves azimuthal mode coupling) to a weak one (that involves
head-tail asymmetry and radial mode coupling), but the thresh-
old of the instability is not raised or is even lowered.[1,2] The
gain of reducing the impedance is reflected only in the fact that
the instability growth rate above threshold is slower.

The instability effect due to potential-well distortion and ra-
dial mode coupling has been analyzed before.[3-7] Our analy-
sis is based on a technique[7,8] developed for the treatment of
the longitudinal head-tail instability effect. To treat the coupling
among radial modes, we introduce a ”double water-bag” model
for the simplicity of analysis.

The analysis is applied to the SLC Damping Ring. The wake
function, as shown in Fig.1, is the present model used [9] tak-
ing into account the recent changes made on the vacuum cham-
ber.[10] The calculated bunch shape distortion (particularly the
head-tail asymmetry), as well as the calculated instabilitythresh-
old, seem to agree with the observations.[10,11]

We explored two ways which might in principle alleviate this
instability mechanism. (i) add a higher harmonic cavity: A
higher harmonic rf voltage with appropriate phase and amplitude
may compensate for the head-tail asymmetry and thus raise the
instability threshold. (ii) operate the accelerator with a negative

Figure 1. Wake function (in volts/pC)versus jzj (in meters) used
in the analysis for the SLC Damping Ring.

momentum compaction factor �:[12] With � > 0, the distorted
beam distribution leans toward the head of the bunch; the bunch
tail sees large wake fields. Operating with � < 0 could conceiv-
ably help because the beam distributionnow leans toward the tail
of the bunch. Both ways (i) and (ii) were explored in this paper.
We found that a higher harmonic cavity of a modest voltage can
indeed eliminate this instability, while the advantage of operat-
ing with � < 0 is less obvious.

II. SUMMARY OF ANALYSIS
Details of the analysis has been given in [2]. A brief summary

is given below. We need to first compute the potential well dis-
tortion effects. Let  0(z; �) be the potential-well distorted beam
distribution in the longitudinal phase space (z; �). The corre-
sponding wake potential is
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We have assumed that the wake function W 0

0(z) is short, i.e.
we consider single-bunch, single-pass instabilities. Later when
we add a higher harmonic rf voltage to counteract the potential-
well distortion, we will add it to V0. The Hamiltonian for the
potential-well distorted beam is
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where!s is the unperturbed synchrotron frequency, T0 is the rev-
olution period,E is the beam energy, and c is the speed of light.

We now apply the technique developed in [7,8] and change
variables from (z; �) to (�;H) by a canonical transformation,



whereH is given by Eq.(2), and � is the canonical variable con-
jugate to H:
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where z(�;H) is obtained by inverting Eq.(2). The motion of a
particle is periodic in � with period
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Note this period depends on the value ofH of the particle under
consideration.

In the double water bag model,  0 has the form

 0(H) = 2N [(1� �)�(Ĥ1 �H) + ��(Ĥ2 �H)] (5)

where �(x) is the step function, � is a parameter between 0 and
1 that specifies the relative amount of particles in each of the wa-
terbags, and
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R Ĥ1

0
dH�0(H) + �

R Ĥ2
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with N the number of particles in the beam bunch. We choose
� = 0:45, and Ĥ1 and Ĥ2 to correspond to one- and two-sigma
particles, such that the weak-beam limit of  0 approximates a
gaussian distribution.

Consider the `-th azimuthal mode (` = 1; 2; 3 means dipole,
quadrupole, sextupole modes) in the longitudinal phase space.
There are two radial modes allowed in the double water bag
model, one at H = Ĥ1, another at H = Ĥ2. The two radial
mode frequencies are determined by the solutions of

det

"

(`) � 2�`c

�0(Ĥ1)
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where we have defined the matrix elements
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It can be shown that all elementsMij are real. The beam is stable
if both solutions for 
(`) are real. The instability growth rate is
given by the imaginary part of 
(`).

In writingdown Eq.(7), we have assumed that azimuthal mode
coupling (coupling among different `’s) can be ignored. This as-
sumption is valid if the mode frequencies do not shift much away
from the unperturbed value `!s (i.e. the mode frequency shifts
� !s).

The potential-well distortion can be considered to have two
effects on the particle motion. First, it causes a ”detuning” ef-
fect, i.e., �0 now depends onH. Second, it causes a distortionof
the phase space topology, i.e., the constant-H contours in phase
space are no longer ellipses. It can be shown that the instability

is a result of the second effect alone. In other words, distortion
of phase space from elliptical contours is a necessary condition
for instability. This observation suggests that one way to allevi-
ate this instability is to introduce an external higher harmonic rf
to reduce the net phase space distortion.

III. APPLICATION TO SLC DAMPING RING

We have applied the analysis to the SLC Damping Rings.
The following assumptions are made: (a) synchrotron radiation
damping can be ignored; (b) the linearized Vlasov equation ap-
plies below the instability threshold; (c) this is a single-bunch,
single-turn instability; (d) the wake field is as shown in Fig.1;
(e) coupling among the azimuthal modes can be ignored; (f) we
include two and only two radial modes with a double water-bag
beam.

Unless specified otherwise, the parameters we used for the
Damping Ring are � = 0:0145, Vrf = 1:0 MV, �s = 0:01275,
cT0 = 35:268 m, E = 1:19 GeV. The unperturbed gaussian
beam is assumed to have �� = 0:73 � 10�3. We mostly have
studied the case of the quadrupole azimuthal mode with ` = 2.
The ` = 1 case is determined by the Robinson damping mecha-
nism and is not the subject of our study.

Figure 2 shows one set of results of our calculations. Figure
2(c) shows the complex mode frequency shifts Y = (
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as functions of the beam intensity N . The solid curves show
the real part of Y . The two radial modes have separate frequen-
cies for small beam intensities. At a threshold value of Nth =
1:4� 1010, the two mode frequencies merge, and the beam be-
comes unstable. The instability growth rate ��1=!s is given by
the dotted curve above threshold. The portion of the solid curve
below threhold in Fig.2(b) shows the relative bunch lengthening
factor �z=�z0 versusN , where �z0 is the unperturbed rms bunch
length. The dotted curve above threshold is an under-estimate
because the calculated �z took into account of potential-well dis-
tortion but ignored bunch lengthening due to microwave insta-
bility. (The solid curve above threshold will be explained later.)
Figure 2(a) shows the shift of synchronous phase zs versus N .
The dotted portion of the curve gives an over-estimate of zs.

The longitudinal radiation damping rate of the Damping Ring
gives ��1rad=!s = 0:00095. The effect of radiation damping on
Nth is presumably small.

The instability threshold was studied as a function of the rf
Voltage Vrf . It was found thatNth = 1:7�1010 when Vrf = 0:8
MV and 2:1� 1010 when Vrf = 0:6 MV.

We have also calculated the case for the sextupole azimuthal
mode ` = 3 and Vrf = 1:0MV. The instability threshold is found
to be Nth = 1:6 � 1010, slightly higher than the threshold for
` = 2. The beam is first unstable in its quadrupole motion, but
the sextupole mode threshold is not far away. The behavior is
similar when Vrf is lowered to 0.6 MV. At 0.6 MV, the ` = 3
threshold is found to be Nth = 2:6� 1010.

Our analysis describes the beam behavior at or below the in-
stability threshold. By an ad hoc consideration, however, we
may try to extend its application to cases above threshold by con-
jecturing that, above threshold, the bunch would lengthen just
enough to stablize the beam. The beam is therefore constantly
staying at the edge of instability. The extension of the solid curve



Figure 2. (a) Shift of synchronous phase zs in mm as a func-
tion of beam intensityN . (b) Bunch lengthening factor (due to
potential-well distortion) versus N . (c) The complex mode fre-
quency shifts versus N .

in Fig.2(b) beyond threshold represents the conjectured bunch
lengthening due to microwave instability. Note that the region
between the dotted and the solid curves is relatively small, in-
dicating that this instability is weak and a small increase of the
bunch length beyond the potential-well distortion stabilizes the
beam. One also expects that the same small relative increase
would occur in the energy spread above threshold. Furthermore,
if there is a mechanism which causes the beam to execute a saw-
tooth oscillation, as observed in the Damping Ring,[10,11] the
amplitude of the sawtooth oscillation is likely to correspond to
the region between the dotted and solid curves of Fig.2(b).

To further study the instabilitymechanism, and to explore pos-
sible cures, we considered the following two possibilities: (i)
add a high harmonic rf voltage to counteract the potential-well
distortion, and (ii) operate the accelerator below transition with
� < 0.[12]

We found that a higher harmonic rf is quite effective in rais-
ing the instability threshold. For example, by introducing a 12
GHz rf system (considered e.g. for the NLC at SLAC), which is
phased 4 mm ahead of the main rf, a voltage of 6.5 kV pushes
the threshold intensity to 3� 1010.

Figure 3. Mode frequencies when � = �0:0145.

Operating the accelerator with � < 0 turned out less con-
clusive. Figure 3(a) shows the mode frequencies with � =
�0:0145. The instability threshold is raised from 1:4� 1010 to
2:0�1010. Figure 3(b) shows what happens to the ` = 3 modes.
Operating with � < 0 seems to improve the instability threshold
somewhat in the present study. However, whether this is a gen-
eral trend needs more investigation.
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