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Abstract

Suddenly induced coherent centroid oscillationsabout the closed
orbit will decohere due to nonlinearities in the magnetic optics—
at the expense of a stored beam’s emittance. Collective effects
mediated by the vacuum chamber wakefield and dependent on
the beam current, can however damp the coherent oscillations—
ameliorating the emittance growth. Closed form expressions for
both the beam centroid and the beam size are obtained in the ab-
sence of collective effects. Simultaneous turn-by-turn measure-
ments of beam centroid and size in the SLC damping ring are
presented, and the importance and intricacy of collective effects
is discussed.

I. NONLINEAR DETUNING AND
CHROMATICITY

In the absence of collective effects, decoherence is dominated
by nonlinear detuning and chromaticity. The evolution of the
beam centroid has been described in [1-4]. We here extend these
results to the rms beam size. Consider a beam with a gaussian
distribution in the (x; x0) phase space. At turn M = 0, the
beam is kicked by an angle �x0. We normalize the coordinates
by the unperturbed rms beam size �x as �x = x=�x and �p =

(�xx+ �xx
0)=�x, where �x and �x are the Courant-Snyder pa-

rameters. We normalize the kick by defining Z = �x
�x

�x0. The

amplitudea =
p

�x2 + �p2, and� is the betatron phase. The beam
distribution after the kick is

�k(�; a) =
a

2�
e�(a

2+Z2+2Za sin�)=2 (1)

The nonlinearity is assumed to result from an amplitude-
dependent betatron tune and a relative energy offset � of a par-
ticle which modifies the betatron tune through the chromaticity
�:

�� = ��a2 + �� (2)

with detuning �; �=�2x is determined by the lattice.
For single particle motion the amplitudea is an invariant. The

time dependence of the energy offset is

�(M ) = �0 cos(2��sM + �0); (3)

while the betatron phase advances [1] as

�� = 2�M (�0 � �a2) +
2�

�s
�0 sin(��sM ) cos(��sM + �0):

(4)
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The beam centroid motion after the kick is given by

[h�xi+ ih�pi] =

Z 1

0

da

Z 2�

0

d� ae�i��i��(a;M) �k(�; a)

=
iZF1

(1� i�)2
exp

�
�i2�M�0 +

Z2

2

i�

1� i�

�
; (5)

where we have defined a time variable in units set by the nonlin-
earity,

� = 4��M (6)

and a form factor differing from 1 when � 6= 0

F1 =

Z 2�

0

d�0

Z 1

0

d�0�(�0)e
�i2 �

�s
�0 sin(��sM) cos(��sM+�0)

(7)
Assuming a gaussian distribution for �0 with rms ��,

F1 = exp

�
�2(

���

�s
)2 sin2(��sM )

�
(8)

Equation (5) gives the decoherence behavior of the beam
centroid.[1-4]

We next compute the rms beam size after the kick,

2
4 h�x

2i
h�x�pi
h�p2i

3
5 =

2
4 1 + Z2

2
0

1 + Z2

2

3
5+

F2Z
2=2

(1 + 4�2)3=2
exp

�
�

2Z2�2

1 + 4�2

�

�

2
64
� cos(4�M�0 �

Z2�
1+4�2

� 3 tan�1(2�))

sin(4�M�0 �
Z2�

1+4�2 � 3 tan�1(2�))

cos(4�M�0 �
Z2�

1+4�2 � 3 tan�1(2�))

3
75 (9)

where F2 = F 4
1 for the gaussian �0 distribution; therefore the

rms size is more strongly modulated by the chromaticity than the
centroid.

The instantaneous beam size is given by ��x =
p
h�x2i � h�xi2.

This gives

�2�x = 1 +
Z2
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Figure 1. Beam evolution; the first 1000 turns after a kick: (a)
h�xi, (b)��x, (c) �equiv and �, (d) �dipole��0 and �quadupole�2�0.
Parameters used are Z = 1, � = 0, �s = 0:01, �� = 0:001,
�0 = 0:18, and � = 1� 10�4.

The amplitude of the beam centroid is, from Eq. (5),

A�x =
p
h�xi2 + h�pi2 =

ZF1

1 + �2
exp

�
�

Z2�2

2(1 + �2)

�
(11)

For small � this amplitude decoheres approximately as a gaus-
sian in time. For large �, it decoheres roughly� 1

�2
. When the

kick is weak and the chromaticity is small, the beam filaments
on a time scale of 1

4��
turns.

Note from Eq. (9) that h�x2i + h�p2i = 2 + Z2 is an invariant
after the kick. If one defines a ‘matched equivalent’ beam emit-
tance [5] as �equiv = 1

2(�
2
�x + �2�p), then

�equiv(M ) =
1

2
(h�x2i�h�xi2+h�p2i�h�pi2) = 1+

Z2

2
�
A2
�x

2
(12)

One may also define an instantaneous emittance as

�(M ) =

q
�2�x�

2
�p � (h�x�pi � h�xih�pi)2 (13)

When M = 0, we have �equiv = � = 1. When M ! 1, we
have �equiv = � = 1 + Z2

2
.

One can define an ‘instantaneous’ dipole tune as 1
2�
� (phase

advance per turn of the centroid oscillation when � = 0):

�dipole = �0 �
�

1 + �2

�
4 +

�
1� �2

1 + �2

�
Z2

�
(14)

Note that if one measures the dipole tune by kicking the beam
and analyzing its subsequent centroid motion, the measured
dipole tune will be a function of time.

The ‘instantaneous’ quadrupole tune can likewise be defined
as 1

2�� (phase advance per turn of the beam size oscillation
when � = 0),
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Figure 2. � = 3, otherwise as in Fig. 1.

�quadrupole = 2�0 �
2�

1 + 4�2
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6 +

�
1� 4�2

1 + 4�2

�
Z2

�
(15)

In general, the quadrupole tune is close, but not equal, to twice
the dipole tune. For M = 0, we have �dipole = �0� (4 +Z2)�

and �quadrupole = 2�0� 2(6 +Z2)�. When M !1, we have
�dipole = �0 and �quadrupole = 2�0.

Figures 1 – 2 show the time behavior of various quantitiesafter
a kick using the analytic expressions. The beam size modulation
at the synchrotron frequency is a result of “recoherence” [2,3].
Despite the prominent �-beat evident in Figs. 1(b) and 2(b), the
difference between the instantaneous and the matched equivalent
emittances is small.

II. COLLECTIVE EFFECTS AND EXPERIMENT

Both the horizontal centroid and beam size were measured by
digitizing the synchrotron light image [6] of the positron beam in
the SLC damping ring. A fast-gated camera detected the radia-
tion emitted on a single pass of the particle bunch, although each
image corresponds to a different machine pulse because of the
limited bandwidth of the data acquisition system. Observations
were made in the neighborhood of a time in the SLC damping
cycle during which the beam is accidentially kicked by spurious
transients in the injection/extraction fast kicker pulses. Data for
various beam currents and chromaticities are shown in Fig. 3.

The data were analyzed by the method of [5] to find �equiv ,
which is plotted in Fig. 4 in the ratio X = (�equiv � 1)=1

2
Z2,

which we expect to asymptote to 1 for M ! 1 in the case of
pure decoherence (cf. Eq. 12). But when the chromaticity is pos-
itive, as in the data, there will be collective “head-tail” damping
of the centroid motion. As the coherent motion damps, rather
than decoheres, there is less motion to filament and the emittance
growth may be significantly inhibited, as seen decisively in the
data. The extent to which X < 1 as M !1 indicates that the
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Figure 3. Measured horizontal centroid and rms size as func-
tions of turn number in the SLC positron damping ring. The
beam was kicked transversely at turns 25 and 135.
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Figure 4. Matched equivalent emittance growth determined
from the data in Fig. 3, relative to the maximum expected in the
absence of collective damping.

time scale for collective damping is relatively ‘fast’ compared to
that for decoherence. The decoherence in turn has a quenching
influence on the collective damping in that the detuning phase
competes with the accumulating head-tail phase causing the in-
stantaneous damping rate to decrease. (For � < 0 this raises the
instabilitythreshold [7].) Thus naively we do not expect filamen-
tation once-occuring, to be reversed; however the data in Fig. 4
appear to show an emittance drop at higher current. It may be
notable that the “strong” head-tail strength � = Nr0�x�zW0

4
p
2�s

[8]
takes on values of 0.27, 0.18, 0.09, and 0.18 in our four cases—
below the instability threshold � = 2. More work, both in the-
ory and experiment, is needed to completely understand the col-
lective aspects of these phenomena.

If head-tail damping dominates the centroid damping, the SLC
damping ring wakefield W?(z) = W0z; (z < 0) (reasonable
for short bunches) follows from the data since the damping rate
[8]

1

MD
�

4

�2
Nr0�x����zW0

�s
: (16)

A rough fit yields W0 = 6 � 107m�3, giving damping times
of 670, 1000, 2000, and 3000 turns for the four cases of Fig. 3.
(We use �� = 0:73� 10�3, �z = 6mm, �s = 0:01275, the �-
function at the impedance source �x = 3m, and  = 2350.) The
expected �-tron tune shift with current

d�x

dN
= �

r0�x�zW0

8
p
2�

= �3:6� 10�14 (17)

then is -0.0007 at N = 2� 1010, e.g..
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