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Abstract

Resonance excitation of longitudinal plasma el ectrostatic wave
by double-frequency laser radiation is investigated numericaly
to study in detail conditions of particle beat wave accelera
tion. The computer simulation is based on the highly specia-
ized code SUR, using splitting technique. Both the space uni-
form and dlightly non-uniform cases areinvestigated. Maintain-
ing of phase synchronism between accelerated particles and ex-
ited longitudinal wave is provided by achoice of density plasma
profile.

I. INTRODUCTION

The method of charged particle acceleration by charge den-
sity waves in plasmas and in non-compensated charged parti-
cles, which YaB. Fainberg proposed in 1956 [1], seems to be
one of the promising methods of collective acceleration [2],
[3]. The primary chalenge in all plasma acceleration schemes
is to produce a substantial plasma density perturbation with a
phase velocity to be close to velocity of light e. At present the
most promising concepts are plasma beat—wave accel eration and
plasma wake field accel eration.

Inthe plasmabeat—wave accel eration scheme[4], two coprop-
agating laser beams with dightly different frequencies are in-
jected into aplasma. C. Toshi at a (1993) obtained the electric
field strengths of the charge—density waveof 0.7 - 107%, and de-
tected the accel erated el ectrons with an energy of 9.1M eV (in-
jection energy was 2M eV'). The resonant plasma density was
8.6 - 10%em=3, but aready in January 1994, the 1em length,
the electrons acquired 28 M eV .

Resonance excitation of longitudina plasma e ectrostatic
waves by electromagnetic waves is investigated numericaly
withhelp of the SUR code. The SUR codeisbased on solvingthe
finite—difference anaogs of the Maxwell and Vlasov—Fokker—
Planck equationsthroughthe successive use of the splitting tech-
nigque over physical processes and variables of phase space.

In order to economize our machine time, we do not yet pose
the problem to be solved with its real parameters [5].

1. COMPUTATIONAL MODEL

Consider alinearly polarized el ectromagnetic wave propagat-
inginthex directionwiththeelectricvector £ directed aongthe
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y—axisand the magnetic field vector B oriented alongthe z—axis
(p—polarization). The action of such a wave onto plasma parti-
clescan giveriseonly tothe V,, and V,, velocity components. In
the case wherethe distribution function does not depend initia ly
ony and z, three phase space coordinates z, V.., V,, are sufficient
to describe subsequent plasmabehavior; therelevant distribution
functionis f(#, p) = f(x, Vo, V)d(V2).

The plasma electron dynamics may by described the Vlasov
equation
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This equation is solved by a variant of the method of splitting
over phase-space coordinates] 6] .

Effects due to charged—particle collisionsin the plasma can-
not significantly affect the time of electromagnetic wave prop-
agation through the simulated system. Because of this, we do
not take the Fokker—Plank collision term in the equation into ac-
count.

The similar equation might be written for the plasma ions;
however, in these computationstheions, being heavy compared
to electrons, were assumed to be motionless.

Thelongitudinal electricfield F,, isdetermined from the Pois-
son equation, which, in one-dimensional case, can be written as

xr

E, = E, |1 + 4mc / (ns(€) — ne(€))dé,
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where n; () is the ion background; n.(x,t) = [ fdp isthe
electron density; «;, and F.|;, represent the coordinate and field
value on the system left boundary, respectively.

The transverse eectromagnetic field must be satisfy the
Maxwell equations:
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where j, = —e [ f.V,dp isthe current density. The latter two
equationscan bewrittenin aform more convenient for numerical
computations:
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Figure 1. Temporal dependence of the maximum amplitude

of the perturbed e ectron density d,, for different plasma den-
sity profiles dong the z-axis: (1)é, = 0; (2,3) rising profiles:
dn = 0.2 and 0.5; (4) descending profile; §, = 0.2
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where F* = E, + B,. Thisenables oneto employ theintegra-
tion over characteristics technique.

The simulated system represent a “plasmain a box” with to-
tal particle reflection from the rated—region boundaries. At the
same time, these boundaries are radiation—transparent, radiation
entering through theleft system boundary and emerging through
the right one. Thisis provided by the assignment of boundary
conditions:

Frp = F(t)[Fysin(wit + ¢1) + Fasin(wat + ¢2)];
F_|R = 0

where the subscripts |, and |z denote the values of quantities
on left-hand and right—hand boundaries, respectively. As the
charge is not build up on the “walls’ and the plasma is neutral
asawhole, wecan assume £, |;, = E|r = 0.

At the initial time, the values of ion and electron density are
defined as n; (z) = n.(z,t = 0) = n, for the uniform plasma
profile and
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ni(x) = ne(z,t =0) =ng ién(m -3)

for anon—uniform one.

To describe the simulated system in dimensionless variables,
let usrescalethetime, length, velocity, electric field strength, and
density by introducingthescale unitsw, ! ; ¢/wp; ¢; mew, /e and
ng respectively. Here

4rnge?

(.dp = m
represents the el ectron plasmafrequency. Theinitia parameters
of the problem are the frequenciesw; and w- of thetwo incident
electromagnetic waves, their dimensionless amplitudes
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Figure 2. Spatial dependence of the longitudinal electric field
E, for the plasmadensity rising (6,, = 0.2) z—profile
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Figure 3. Spatial dependence of the longitudinal electric field
E, for the plasmadensity rising (6,, = 0.5) z—profile

the system length 7, the electron therma velocity V7, , and the
initial plasma density profile (fixed ion density profile). In a
given run we considered the following parameters val ues:

w1 =4; wa = b;
oy = 0.1; as = 0.08;
L =400; Vp. =0.1;k=0.2;

F(t) = ooty

¢1=¢2 =0.

The difference between theruns consisted in the value and di-
rection of the profile variation and in the se cases we took 6,, =
0;0.2;0.5.

1. RESULTS

Figure 1 presents the perturbated el ectron density maximum
amplitudesd,, asafunction of timetw, fortheuniform(curvel),
rising (curves 2 and 3) and descending (curve 4) plasma profile
along r—axis. One can see that, a the early stage, arise of d,,
isin good agreement with theoretical resultsobtainedin[7], [8],
(9]

od, 1
6t = Zalazwp.

Then the amplitude d,, growth dows down and all the curves

saturate at the level of about 0.1ng. The simulated saturation
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Figure 4. Spatia dependence of the longitudinal electric field
E, for the plasma density descending (6,, = 0.2) z—profile

level is considerably lower then the theoretically estimated one
due to the relativistic shift of the Langmuir frequency obtained
for cold plasmain[7], [8], [9]:

af1
d;at = §6a1a2 ~ 0.34

For nonuniform density profiles, the saturation level is higher
than for the uniform one (curve 1). Thisis caused by the fact,
for the case of uniform profile, the plasma density was chosen to
ensure the exact equality of the Langmuir frequency to the beat
frequency w;, = wi —w,. Duringthetransitionto a steady state,
the location of the perturbed electron density maximum is de-
termined by the distance from the left boundary to some point,
where the plasma density has such avalue that the difference be-
tween theelectron Langmuir frequency and the beat frequency is
equal to aquantity éw,,; (optimal frequency shift) proportional
to (alaz)z/?’ws.

Figures 2-4 shows the steady-state spatia distributionsof the
longitudinal electricfield £, for the plasmadensity profilerising
(Fig.2 and 3) and descending (Fig.4) along the z—axis. It isseen
that the longitudinal e ectric field reaches itsmaximum at points
where thelocal plasma frequency exceeds the beet frequency by
avaueof dw,,; determined initsturn bu theamplitudesand fre-
quencies of electromagnetic waves. The plasma density =10%
variation within the rated region resultsin an acceptabl e spatial
distribution of F,. Thisalows one to hope (see Fig.4) that the
descending plasma profile may be of practical use in this beat-
wave acceleration method: an appropriate density gradient may
help to prolong the accel erated particle synchronism with alon-
gitudina beat wave [10].
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