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Abstract

A beam propagating in a continuous, linear focusing channel
tendsto relax to athermal equilibrium state. We employ nonlin-
ear conservation constraints to theoretically analyze changesin
guantities that characterize both an initial semi-Gaussian beam
with a matched rms beam envelope and a K-V beam under a
relaxation to thermal equilibrium. Results from particle-in-cell
simulations are compared to the theoretical predictions.

|. INTRODUCTION

Semi-Gaussian (SG) beams are characterized by a thermal-
like Gaussian distribution of particle momentum and uniformly
distributed space-charge. In so-called K-V beams first de-
scribed by Kapchinskij and VIadimirskij, al particles have the
same transverse energy and the space-charge is aso uniformly
distributed.!? Both SG and K-V beams are widely used in the
theory and simulation of charged particle beams, and a funda-
mental question is how these beams change on relaxation to
thermal equilibrium (TE). Here we employ conservation con-
straints of a simple theoretical model to derive equations that
connect initial SG and K-V beams to their final TE state. These
equations are solved numerically to obtain universa curves de-
scribing changes in beam emittance, radius, and pesk density on
relaxation to TE. These curves demonstrate contexts in which
these distributions may be regarded as approximations to TE.
This study does not address the dynamical evolution of the beam
asitrelaxesto TE.

Il. THEORETICAL MODEL, MOMENTS, AND
CONSERVATION CONSTRAINTS

We employ an (r, 6, z) cylindrical polar coordinate system to
analyze an infinitely long, unbunched (9/9z = 0) beam com-
posed of a single species of particles of mass m and charge q.
All particles propagate with constant axia velocity vye,, and
continuous radial focusing is provided by an external eectric
field that is proportiona to the radia coordinater, i.e., Ecxy =
—(mvk3/q)re,, where ks = const is the betatron wavenum-
ber. This field can be thought of as arising from a uniform
background of charges or as representing the average focusing
strength of an alternating gradient lattice of electric or magnetic
quadrupoles.»? For simplicity, we neglect self-magnetic fields
and employ a nonrelativistic and electrostatic model where ini-
tial (s = 0) andfind (s — oo) states of the beam can be de-
scribed for along axia propagation distance s (s = wvyt, where
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t isthe time) in terms of a single-particle distribution function
f that can generally be afunction of the transverse position and
momentum x and p of asingle particleand the axia coordinate
s,l.e, f = f(x,p,s). Neglecting particle correlation effects,
the evolution of £ isdescribed by the Vlasov equation,!
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istheHamiltonianand the self-field potential ¢ satisfiesthe Pois-
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Beam Vlasov equilibriaare stationary (9/ds = 0) solutions
to the Vlasov-Poisson system (1)-(3). It follows that any distri-
bution function f formed from the single-particle constants of
themationin thefull equilibriumfield configurationisaVlasov
equilibrium. Therefore, for azimuthaly symmetric (9/90 = 0)
beams, f = F(H) isan equilibrium distribution for arbitrary
functions ' ( /). It can be shownthat theequilibrium f = F'(H)
isstableto perturbationsof arbitrary amplitudeif d F(H ) /dH <
0 1. Moreover, the density inversion theorem' shows that any
beam equilibrium with a radial density profilen(r) = [d*p f
satisfying dn/dr < 0 corresponds to a stable distribution f =
F(H)withdF(H)/dH < 0.

M oment descriptions of the beam can provideasimplified un-
derstanding of beam transport. Transverse statistical averages of
aquantity £ are expressed interms of thisVlasov formulation as
(¢) = (1/N) [d*x [d*p ¢ | ,where N = [d*x [d?p [ isthe
number of particlesper unit axia length. A commonly employed
measure of the envelope radius of beam particlesisthermsra-
dius R = /2(r?). Notethat R isidenticaly equd to the edge
radius of a beam with uniformly distributed space-charge. Sec-
ond order moments of the Vlasov equation (1) can be employed
toderivethe so-called “rmsenvel ope equation” for the evolution
of R.1'2 For azimuthally symmetric beams (i.e., /96 = 0), one
obtains
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where K = —2¢(rd¢/dr)/mv} isthe self-field perveance [Eq.
(3) can be integrated to obtain (rd¢/dr) = —q N, and thereby
show that K = 2¢? N/mv} = const] and

& = 16[(x*)((dx/ds)’) — (w(dx/ds))’] (5)

isthe square of the rms z-emittance ¢,,. For a K-V equilibrium
distribution, ¢, isconstant and corresponds to the phase-space



area(inx, dz /ds phase-space) of thebeam. For general distribu-
tions, ¢, isnot constant and isemployed as a statistical measure
of the quality of the beam.?

It is convenient to express the envelope equation (4) as
d’R/ds* + c*R — €2/ R® = 0,where o = (k3 — K/2(r?))!/
isthe phase-advance per unit axia length of thetransverse oscil-
lations of a single particle moving in the applied and self-fields
of an “equivalent” K-V beam.? For radial confinement of the
beam (n = [d?p f = Ointhelimitr — o0), ? > 0, with
thelimit ¢ = 0 corresponding to a cold-beam equilibrium with
dR/ds = 0 = d?R/ds? and ¢2 = 0. In the tenuous, kinetic-
dominated limit k3 >> K /2(r*), space-charge effects are negli-
gible, and ¢ ~ ¢y, where oy = |ks| isthe“undepressed” phase
advance. The phase advance ¢ in the presence of space-charge
is“depressed” from oy (i.€, 0? = 02 — K/2(r?)), and the phase
advanceratio

o/oo = (1 — K/2k3(r*))!/? (6)
provides a convenient normalized measure of space-charge ef-
fects (0 < o/oy < 1), withthelimitse /og — 0ando/oy — 1
corresponding to a cold, space-charge dominated beam and a
warm, kinetic dominated beam, respectively.

The nonlinear Vlasov-Poisson system (1)-(3) possesses the
conservation constraints

N = /dzx/dzpf = const,
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where W = [d%x |0¢/0x|?/87 isthe sdlf-field energy. It
can be verified that dN/ds = 0 = d&/ds follow directly from
Egs. (1)-(3). These constraints correspond to the conservation
per unit axial length of particle number and system energy (par-
ticle and field) and provide powerful constraints on the nonlin-
ear evolution of the system. Similar constraints remain valid
in systems where particle correlation effects are not negligible.
Note that the two-dimensional self-field energy W is logarith-
mically divergent since d¢/0x ~ —(2¢N/r)e, forr > R.
For practica applications, thisdivergencemust be removed (reg-
ularized) in an s-invariant manner. For azimuthally symmetric
(0/06 = 0) beams, the divergence can be isolated by examin-
ing thework required to assembl e the beam from alargeradius?
Subtracting this divergence from 17/, we obtain the regularized
self-field energy

W, = —8n2¢2 /Ooodr rln (ri) n(r) /Ordr (),  (8)

where r, = constisascale radiusand n(r) = [d?p f isthera
dial density. Making thereplacement W — W, inthe constraint
& = const obtains the needed regul arized energy constraint. In-
sofar as the same scale radius r; = const is applied, this reg-
ularized conservation constraint can be applied to connect two
azimuthally symmetric states, even if the intervening states are
not azimuthally symmetric.

1. BEAM THERMAL EQUILIBRIA

A beam thermal equilibrium (TE) is characterized by aradia
density profilethat becomes uniformin thelimit of low tempera-
ture and Gaussian-likefor high temperature. The single-particle
distribution function describing a TE beam is!>2
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Here, ny = congt is a characteristic density and 7" = const
is the thermodynamic temperature (energy units). Specification
of the charge and energy of the beam macrostate fix the con-
stants ng and 7. The TE distributionis a specia class of stable
Vlasov equilibrium.’ Within the weak coupling approximation
(¢2/n3'? < T) any initial distribution function f(x, p, s =
0), however complex, relaxes to the TE form of Eq. (9). This
istrue regardless of the details of theintervening evolution due
to both collective and collisional processes. Even stable Vlasov
equilibriamust ultimately relax to TE form due to effects out-
sidethe Vlasov modd. Inthisregard, TE can be regarded asthe
preferred equilibrium state of the system.

Employing the TE distribution (9), one obtains
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where &, denotes the regularized system energy. The enve-

lope equation (4) with d>R/ds? = 0 and ¢ calculated above

then shows that
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The TE density n(r) = [d*p f needed to explicitly calcu-
late N = 2n [;°dr rn(r) and W, isnonlinear, and must, in
general, be calculated numerically. For this purposeit is con-
venient to express the density as n(r) = ngexp(—1), where
v = (1/T)[muik;r? /2 + q¢)] setisfies the transformed Poisson
equation

1d dy
> (pdp) =14+ A —exp(—9),
subject to ¢»(0) = 0. Here, p = r/A, isaradia coordi-

nate scaled to the thermal Debye length A\, = (T/4m¢%ng)'/?
formed from the on-axis beam density ny, and 1 + A =
207 k; wi, (Where w?y = 4mg°ng/m is the on-axis plasma
frequency-squared), isa positive, dimensionl essparameter qual-
itatively representing the ratio of applied to space-charge defo-
cusing forces.

V. SEMI-GAUSSIAN AND K-V BEAMS

Semi-Gaussian (SG) and K-V beams are described by the
single-particle distribution functions' —3

SG (12

F= { (np/27mT3,)O(ry, — r) exp(—p?/2mT,), >,

(np/2mmup)d(H — 2T [ vp),

Here, ©(x) and é(z) are theta- and Dirac delta-functions,
T, = cong is the beam kinetic temperature [i.e, NT, =



[d*x [d?p (p?/2m)f] for both distributions, and both
density profilesn = [d?p f haveaconstant valuen, withinthe
beam radiusr, = const[i.e, n = n; for 0 < r < 7] and are
zero outsidethebeamradius[i.e., n = 0 forr > r,]. K-V distri-
butionsare exact Vlasov equilibriawith §/Js = 0, whereas SG
distributions are not and will evolve within the Vlasov modd.
The SG distribution must be regarded as an initia state, and the
conditions dR/ds = 0 = d*R/ds® are applied to this state
for a“matched” beam envelope. Then for both the SG and K-V
distributions, the envel ope equation (4) becomes an initial state
constraint 27, = mugkr; /2 — ¢*mriny/2 [equivaent to Eq.
(11) and defining r, for K-V beams], and expressions identical
in form are obtained to the TE quantities calculated in Eq. (10)
with the kinetic temperature 7}, replacing the thermodynamic
temperature 7". Additionaly, for these rectangular density pro-
file beams, one may analytically caculate N = wriny, (r?) =
r2/2,and W, = (¢*N?/4)[1 — 41n(re/7;)].

V. BEAM CHANGES ON RELAXATION TO
THERMAL EQUILIBRIUM

The consarvation constraints N = const and £, = const
uniquely connect an initial SG beam with a matched envelope
or an initial K-V beam to itsfinal TE state. These constraints
can be used with Egs. (10) and (11) expressed in scaled form for
both initial and fina states to calculate ratios of final to initial
state emittance-squared ¢2, mean-squareradius(r?), and on-axis
density n(r = 0) interms of the single dimensionless parameter
A associated with the final TE. Likewise, the phase advance ra
tio /o of theinitial beam can aso becalculated intermsof A.
Details of this procedure are presented elsewhere® and the re-
sulting ratios are plotted verses o / o in thefigure. These curves
areuniversal inthe sensethat all beam parametersfall ontoasin-
glecurve and the curves apply both to aninitia (matched) SG or
aK-V beam. Particle-in-cell simulations of an initial SG beam
are presented inthefigure. These simulationsprovideinsight on
theaxial propagation distance necessary for relaxationto TE and
agree well with thetheory for o /o5 small .3 Spreads about the
simulation pointsindicate rms fluctuationsthat become large as
o/co — 1 dueto the lack of space charge forces to inducere-
laxationto TE. Indeed, it has been shown that the simul ationsare
consistent with relaxation to a virtual, phase-mixed equilibrium
aso/og — 1.

The figure shows that the rms emittance and radius undergo
small, space-charge dependent decreases on relaxation to TE,
whilethe peak (on-axis) beam density can undergo a significant,
space-charge dependent increase. All theratiosplotted approach
unity in the space-charge dominated limit o /oy — 0 because al
three distributions become identical with uniform densities and
zero temperatures in this limit. In the kinetic dominated limit
/oo — 1, theratios of rms emittance and mean-square radius
approach unity, whereas the ratio of peak densities approaches
2. These limitsare consistent with analytic ca cul ations with the
self-field potentia ¢ neglected. With ¢ neglected, all second-
order moments of the system are constants of themotion (therms
radius and temperature are then constants) and the final TE den-
sity profileis Gaussian with n(r) = ngexp(—2r?/r?), thereby
showing that the ratio of fina to initial pesk density is 2 using
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Figure. 1. Ratiosof find toinitial state emittance squared (2,
upper plot, solid curve), mean-square radius ((r?), upper plot,
dashed  curve), and peak (on-axis) density
[n(r = 0), lower plot] verses o/ .

N = mrin, = [d*x n(r). For thegeneral case of finite space-
charge effects with 0 < o/op < 1, the figure demonstrates
that on relaxation to TE, the rms radius of the beam decreases
dightly, while the peak (on-axis) beam density significantly in-
creases. Evidently, theinitialy uniform density beam relaxesto
adiffuseradial density profilesuch that thecharacteristic thermal
tail and increased coredensity wei ght to maintain nearly constant
rms radius.

V1. CONCLUSIONS

An initial semi-Gaussian or K-V beam within a continuous
focusing channel must ultimately relax to thermal equilibrium.
We employed conservation constraints of a simple theoretical
model to analyze changes in quantities characterizing the beam
under this relaxation. Universa curves were calculated giving
the ratio of various final to initial state quantities in terms of
the ratio of depressed to undepressed phase advance of theini-
tial beam, which provides a convenient normalized measure of
space-charge effects. These curves demonstrate that the rms
emittance and radius of the beam undergo asmall, space-charge
dependent decrease on relaxation to TE. The smallness of these
decreases for o/ small indicate that with respect to the trans-
port of second-order moments of the system, which are of pri-
mary importance in beam physics, the SG and K-V distributions
are a good approximation to the true TE distribution that can
be transported without change. On the other hand, particularly
for larger o/, it was demonstrated that higher order moments
or nonmoment quantities (e.g., peak beam density) could un-



dergo significant space-charge dependent changes on relaxation
to TE, thereby indicating both contexts for caution and possi-
ble measures to ascertain whether the beam has relaxed. More
detailed analyses including beam rotation and magnetic focus-
ing along with relativistic, self-magnetic, and longitudinal ef-
fects have been carried out, and the essential conclusions of this
simple analysis remain unaltered.?
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