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Abstract

A beam propagating in a continuous, linear focusing channel
tends to relax to a thermal equilibrium state. We employ nonlin-
ear conservation constraints to theoretically analyze changes in
quantities that characterize both an initial semi-Gaussian beam
with a matched rms beam envelope and a K-V beam under a
relaxation to thermal equilibrium. Results from particle-in-cell
simulations are compared to the theoretical predictions.

I. INTRODUCTION

Semi-Gaussian (SG) beams are characterized by a thermal-
like Gaussian distribution of particle momentum and uniformly
distributed space-charge. In so-called K-V beams first de-
scribed by Kapchinskij and Vladimirskij, all particles have the
same transverse energy and the space-charge is also uniformly
distributed.1;2 Both SG and K-V beams are widely used in the
theory and simulation of charged particle beams, and a funda-
mental question is how these beams change on relaxation to
thermal equilibrium (TE). Here we employ conservation con-
straints of a simple theoretical model to derive equations that
connect initial SG and K-V beams to their final TE state. These
equations are solved numerically to obtain universal curves de-
scribing changes in beam emittance, radius, and peak density on
relaxation to TE. These curves demonstrate contexts in which
these distributions may be regarded as approximations to TE.
This study does not address the dynamical evolution of the beam
as it relaxes to TE.

II. THEORETICAL MODEL, MOMENTS, AND
CONSERVATION CONSTRAINTS

We employ an (r; �; z) cylindrical polar coordinate system to
analyze an infinitely long, unbunched (@=@z = 0) beam com-
posed of a single species of particles of mass m and charge q.
All particles propagate with constant axial velocity vbez, and
continuous radial focusing is provided by an external electric
field that is proportional to the radial coordinate r, i.e., Eext =
�(mv2bk

2

�=q)rer, where k� = const is the betatron wavenum-
ber. This field can be thought of as arising from a uniform
background of charges or as representing the average focusing
strength of an alternating gradient lattice of electric or magnetic
quadrupoles.1;2 For simplicity, we neglect self-magnetic fields
and employ a nonrelativistic and electrostatic model where ini-
tial (s = 0) and final (s ! 1) states of the beam can be de-
scribed for a long axial propagation distance s (s = vbt, where
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t is the time) in terms of a single-particle distribution function
f that can generally be a function of the transverse position and
momentum x and p of a single particle and the axial coordinate
s, i.e., f = f(x;p; s). Neglecting particle correlation effects,
the evolution of f is described by the Vlasov equation,1
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is the Hamiltonian and the self-field potential� satisfies the Pois-
son equation�
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Beam Vlasov equilibria are stationary (@=@s = 0) solutions
to the Vlasov-Poisson system (1)-(3). It follows that any distri-
bution function f formed from the single-particle constants of
the motion in the full equilibrium field configuration is a Vlasov
equilibrium. Therefore, for azimuthally symmetric (@=@� = 0)
beams, f = F (H) is an equilibrium distribution for arbitrary
functionsF (H). It can be shown that the equilibriumf = F (H)
is stable to perturbations of arbitrary amplitude if dF (H)=dH �

0 1. Moreover, the density inversion theorem1 shows that any
beam equilibrium with a radial density profile n(r) =

R
d2p f

satisfying dn=dr � 0 corresponds to a stable distribution f =
F (H) with dF (H)=dH � 0.

Moment descriptions of the beam can provide a simplified un-
derstanding of beam transport. Transverse statistical averages of
a quantity � are expressed in terms of this Vlasov formulation as
h�i � (1=N )

R
d2x

R
d2p � f , where N �

R
d2x

R
d2p f is the

number of particles per unit axial length. A commonly employed
measure of the envelope radius of beam particles is the rms ra-
dius R �

p
2hr2i. Note that R is identically equal to the edge

radius of a beam with uniformly distributed space-charge. Sec-
ond order moments of the Vlasov equation (1) can be employed
to derive the so-called “rms envelope equation” for the evolution
ofR.1;2 For azimuthally symmetric beams (i.e., @=@� = 0), one
obtains

d2R

ds2
+ k2�R�

K

R
�
�2x
R3

= 0 ; (4)

where K = �2qhr@�=@ri=mv2b is the self-field perveance [Eq.
(3) can be integrated to obtain hr@�=@ri = �qN , and thereby
show that K = 2q2N=mv2b = const] and

�2x = 16[hx2ih(dx=ds)2i � hx(dx=ds)i2] (5)

is the square of the rms x-emittance �x. For a K-V equilibrium
distribution, ��x is constant and corresponds to the phase-space



area (inx, dx=ds phase-space) of the beam. For general distribu-
tions, �x is not constant and is employed as a statistical measure
of the quality of the beam.2

It is convenient to express the envelope equation (4) as
d2R=ds2 + �2R� �2x=R

3 = 0, where � � (k2� �K=2hr2i)1=2

is the phase-advance per unit axial length of the transverse oscil-
lations of a single particle moving in the applied and self-fields
of an “equivalent” K-V beam.2 For radial confinement of the
beam (n =

R
d2p f = 0 in the limit r ! 1), �2 � 0, with

the limit � = 0 corresponding to a cold-beam equilibrium with
dR=ds = 0 = d2R=ds2 and �2x = 0. In the tenuous, kinetic-
dominated limit k2� � K=2hr2i, space-charge effects are negli-
gible, and � ' �0, where �0 = jk�j is the “undepressed” phase
advance. The phase advance � in the presence of space-charge
is “depressed” from �0 (i.e., �2 = �2

0
�K=2hr2i), and the phase

advance ratio

�=�0 = (1�K=2k2�hr
2i)1=2 (6)

provides a convenient normalized measure of space-charge ef-
fects (0 � �=�0 � 1), with the limits �=�0 ! 0 and �=�0 ! 1
corresponding to a cold, space-charge dominated beam and a
warm, kinetic dominated beam, respectively.

The nonlinear Vlasov-Poisson system (1)-(3) possesses the
conservation constraints

N =

Z
d2x

Z
d2p f = const; (7)

E =

Z
d2x

Z
d2p

p2

2m
f + Nmv2b

k2�

2
hr2i + W = const;

where W �
R
d2x j@�=@xj2=8� is the self-field energy. It

can be verified that dN=ds = 0 = dE=ds follow directly from
Eqs. (1)-(3). These constraints correspond to the conservation
per unit axial length of particle number and system energy (par-
ticle and field) and provide powerful constraints on the nonlin-
ear evolution of the system. Similar constraints remain valid
in systems where particle correlation effects are not negligible.
Note that the two-dimensional self-field energy W is logarith-
mically divergent since @�=@x � �(2qN=r)er for r � R.
For practical applications, this divergence must be removed (reg-
ularized) in an s-invariant manner. For azimuthally symmetric
(@=@� = 0) beams, the divergence can be isolated by examin-
ing the work required to assemble the beam from a large radius.3

Subtracting this divergence from W , we obtain the regularized
self-field energy

Wr = �8�2q2
Z
1

0

dr r ln

�
r

rs

�
n(r)

Z r

0

d�r �rn(�r); (8)

where rs = const is a scale radius and n(r) =
R
d2p f is the ra-

dial density. Making the replacementW !Wr in the constraint
E = const obtains the needed regularized energy constraint. In-
sofar as the same scale radius rs = const is applied, this reg-
ularized conservation constraint can be applied to connect two
azimuthally symmetric states, even if the intervening states are
not azimuthally symmetric.

III. BEAM THERMAL EQUILIBRIA
A beam thermal equilibrium (TE) is characterized by a radial

density profile that becomes uniform in the limit of low tempera-
ture and Gaussian-like for high temperature. The single-particle
distribution function describing a TE beam is1;2

f =
n0

2�mT
exp

�
�
vbH

T

�
: (9)

Here, n0 = const is a characteristic density and T = const
is the thermodynamic temperature (energy units). Specification
of the charge and energy of the beam macrostate fix the con-
stants n0 and T . The TE distribution is a special class of stable
Vlasov equilibrium.1 Within the weak coupling approximation
(q2=n�1=3

0
� T ) any initial distribution function f(x;p; s =

0), however complex, relaxes to the TE form of Eq. (9). This
is true regardless of the details of the intervening evolution due
to both collective and collisional processes. Even stable Vlasov
equilibria must ultimately relax to TE form due to effects out-
side the Vlasov model. In this regard, TE can be regarded as the
preferred equilibrium state of the system.

Employing the TE distribution (9), one obtains

�2x =
8T

mv2b
hr2i; Er = NT +mv2b

k2�

2
hr2i+Wr; (10)

where Er denotes the regularized system energy. The enve-
lope equation (4) with d2R=ds2 = 0 and �2x calculated above
then shows that

hr2i =
2T + q2N

mv2bk
2

�

: (11)

The TE density n(r) =
R
d2p f needed to explicitly calcu-

late N = 2�
R
1

0
dr rn(r) and Wr is nonlinear, and must, in

general, be calculated numerically. For this purpose it is con-
venient to express the density as n(r) = n0 exp(� ), where
 � (1=T )[mv2bk

2

�r
2=2 + q�] satisfies the transformed Poisson

equation

1

�

d

d�

�
�
d 

d�

�
= 1+ �� exp(� );

subject to  (0) = 0. Here, � � r=�D is a radial coordi-
nate scaled to the thermal Debye length �D � (T=4�q2n0)

1=2

formed from the on-axis beam density n0, and 1 + � �

2v2bk
2

�=!
2

p0 (where !2p0 � 4�q2n0=m is the on-axis plasma
frequency-squared), is a positive, dimensionless parameter qual-
itatively representing the ratio of applied to space-charge defo-
cusing forces.

IV. SEMI-GAUSSIAN AND K-V BEAMS
Semi-Gaussian (SG) and K-V beams are described by the

single-particle distribution functions1�3

f =

�
(nb=2�mTb)�(rb � r) exp(�p2=2mTb); SG (12)
(nb=2�mvb)�(H � 2Tb=vb); K-V.

Here, �(x) and �(x) are theta- and Dirac delta-functions,
Tb = const is the beam kinetic temperature [i.e., NTb =



R
d2x

R
d2p (p2=2m)f] for both distributions, and both

density profiles n =
R
d2p f have a constant value nb within the

beam radius rb = const [i.e., n = nb for 0 � r < rb] and are
zero outside the beam radius [i.e., n = 0 for r > rb]. K-V distri-
butions are exact Vlasov equilibria with @=@s = 0, whereas SG
distributions are not and will evolve within the Vlasov model.
The SG distribution must be regarded as an initial state, and the
conditions dR=ds = 0 = d2R=ds2 are applied to this state
for a “matched” beam envelope. Then for both the SG and K-V
distributions, the envelope equation (4) becomes an initial state
constraint 2Tb = mv2bk

2

�r
2

b=2 � q2�r2bnb=2 [equivalent to Eq.
(11) and defining rb for K-V beams], and expressions identical
in form are obtained to the TE quantities calculated in Eq. (10)
with the kinetic temperature Tb replacing the thermodynamic
temperature T . Additionally, for these rectangular density pro-
file beams, one may analytically calculate N = �r2bnb, hr

2i =
r2b=2, and Wr = (q2N2=4)[1� 4 ln(rb=rs)].

V. BEAM CHANGES ON RELAXATION TO
THERMAL EQUILIBRIUM

The conservation constraints N = const and Er = const
uniquely connect an initial SG beam with a matched envelope
or an initial K-V beam to its final TE state. These constraints
can be used with Eqs. (10) and (11) expressed in scaled form for
both initial and final states to calculate ratios of final to initial
state emittance-squared �2x, mean-square radius hr2i, and on-axis
density n(r = 0) in terms of the single dimensionless parameter
� associated with the final TE. Likewise, the phase advance ra-
tio �=�0 of the initial beam can also be calculated in terms of �.
Details of this procedure are presented elsewhere,3 and the re-
sulting ratios are plotted verses �=�0 in the figure. These curves
are universal in the sense that all beam parameters fall onto a sin-
gle curve and the curves apply both to an initial (matched) SG or
a K-V beam. Particle-in-cell simulations of an initial SG beam
are presented in the figure. These simulations provide insight on
the axial propagation distance necessary for relaxation to TE and
agree well with the theory for �=�0 small.3;4 Spreads about the
simulation points indicate rms fluctuations that become large as
�=�0 ! 1 due to the lack of space charge forces to induce re-
laxation to TE. Indeed, it has been shown that the simulations are
consistent with relaxation to a virtual, phase-mixed equilibrium
as �=�0 ! 1.

The figure shows that the rms emittance and radius undergo
small, space-charge dependent decreases on relaxation to TE,
while the peak (on-axis) beam density can undergo a significant,
space-charge dependent increase. All the ratios plotted approach
unity in the space-charge dominated limit�=�0 ! 0 because all
three distributions become identical with uniform densities and
zero temperatures in this limit. In the kinetic dominated limit
�=�0 ! 1, the ratios of rms emittance and mean-square radius
approach unity, whereas the ratio of peak densities approaches
2. These limits are consistent with analytic calculations with the
self-field potential � neglected. With � neglected, all second-
order moments of the system are constants of the motion (the rms
radius and temperature are then constants) and the final TE den-
sity profile is Gaussian with n(r) = n0 exp(�2r

2=r2b), thereby
showing that the ratio of final to initial peak density is 2 using
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Figure. 1. Ratios of final to initial state emittance squared (�2x,
upper plot, solid curve), mean-square radius (hr2i, upper plot,
dashed curve), and peak (on-axis) density
[n(r = 0), lower plot] verses �=�0.

N = �r2bnb =
R
d2x n(r). For the general case of finite space-

charge effects with 0 < �=�0 < 1, the figure demonstrates
that on relaxation to TE, the rms radius of the beam decreases
slightly, while the peak (on-axis) beam density significantly in-
creases. Evidently, the initially uniform density beam relaxes to
a diffuse radial density profile such that the characteristic thermal
tail and increased core density weight to maintain nearly constant
rms radius.

VI. CONCLUSIONS

An initial semi-Gaussian or K-V beam within a continuous
focusing channel must ultimately relax to thermal equilibrium.
We employed conservation constraints of a simple theoretical
model to analyze changes in quantities characterizing the beam
under this relaxation. Universal curves were calculated giving
the ratio of various final to initial state quantities in terms of
the ratio of depressed to undepressed phase advance of the ini-
tial beam, which provides a convenient normalized measure of
space-charge effects. These curves demonstrate that the rms
emittance and radius of the beam undergo a small, space-charge
dependent decrease on relaxation to TE. The smallness of these
decreases for �=�0 small indicate that with respect to the trans-
port of second-order moments of the system, which are of pri-
mary importance in beam physics, the SG and K-V distributions
are a good approximation to the true TE distribution that can
be transported without change. On the other hand, particularly
for larger �=�0, it was demonstrated that higher order moments
or nonmoment quantities (e.g., peak beam density) could un-



dergo significant space-charge dependent changes on relaxation
to TE, thereby indicating both contexts for caution and possi-
ble measures to ascertain whether the beam has relaxed. More
detailed analyses including beam rotation and magnetic focus-
ing along with relativistic, self-magnetic, and longitudinal ef-
fects have been carried out, and the essential conclusions of this
simple analysis remain unaltered.3
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