
FREQUENCY DEPENDENCE OF THE POLARIZABILITY AND
SUSCEPTIBILITY OF A CIRCULAR HOLE IN A THICK CONDUCTING

WALL�

Wen-Hao Cheng, Alexei V. Fedotov and Robert L. Gluckstern
Physics Department, University of Maryland, College Park, MD 20742, USA

Abstract

We calculate a generalized polarizability and susceptibility of a
circular hole in a thick metallic plate as a function of hole di-
mensions and wavelength. In particular, we construct a varia-
tional form which allows us to obtain accurate numerical results
with a minimum of computational effort. Numerical results are
obtained for a variety of hole dimensions relative to the wave-
length. In addition, analytic results are obtained and shown to
be accurate to second order in the ratio of the hole dimension to
the wavelength for a vanishingly thin wall.

I. INTRODUCTION

The penetration of electric and magnetic fields through a hole
in a metallic wall plays an important role in many devices. In an
accelerator, such holes in the beam pipe serve to allow access for
pumping, devices for beam current and beam position measure-
ment, coupling between cavities, etc. In much of the early work
the hole dimensions were considered to be very small compared
to the wavelength. The purpose of this paper is to extend the cal-
culation to include the effects of finite wavelength, although we
still confine our attention to wavelengths no smaller than the hole
dimensions.

We redefine the conventional static treatment of polarizabil-
ity and susceptibility in terms of the cavity detuning, defining a
new generalized polarizabilityand susceptibility. In this way, we
include the frequency dependence of the polarizability and sus-
ceptibility as well as the contributions of higher multipole mo-
ments of the hole. But these generalized polarizability and sus-
ceptibilites should only be seen as intermediate vehicles to relate
the coupling integrals of interest to the detuning of the cavity by
the hole. We will obtain an expression for the detuning of the
modes of the symmetric cavity structure due to the presence of
the hole. The symmetric cavity structure consists of two identi-
cal cavities, each of the lengthL and radius b. Clearly the modes
will be either symmetric or antisymmetric in the axial coordi-
nate. Our analysis will be limited to the modes near the TM0N`,
TM1N` and TE1N` modes of the unperturbed pillbox.

II. GENERAL ANALYSIS

Our analysis can be generalized to include cavity regions and
iris regions of arbitrary cross section. Takingz1 = 0 to be the left
end of the left cavity, we can write the transverse electric field as

E
(C)

? (r; z1) =
X
n

anen(r)
sin �nz1

sin �nL
; (1)
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where r stands for the transverse coordinates x and y, and where
the modes en may be either TM or TE. Here �2n = k2 �
2n, where 2n are the eigenvalues of the two dimensional scalar
Helmholtz equation in the cavity region with the appropriate
boundary conditions. We use Latin subscripts (n;m;N; � � �) for
the cavity region, and kc=2� is the frequency.

The transverse electric field in the iris region can similarly be
written as

E
(I)

? (r; z2) =
X
�

b�e�(r)
cos ��z2
cos ��g=2

; (2)

where z2 = 0 is now the center of the iris region, and where we
use Greek subscripts (�; �; �; � � �) for the iris region. Equation
(2) is appropriate for the modes in our symmetric structure for
whichE(I)

? is even in z2. For those modes whereE(I)

? is odd in
z2 we need to replace the cosines by sines in Eq. (2). We express
the coefficients an and b� in terms ofE?(r) � u(r) at the inter-
face between the cavity and the iris (z1 = L; z2 = �g=2). We
then write the transverse magnetic field in each region. Equating
the transverse magnetic field at z1 = L; z2 = �g=2 in the region
S1 leads to the integral equation for the unknown function u(r)

Z
S1

dS0 u(r0)�
$

K (r; r0) = 0; (3)

where

$
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��e�(r)e�(r
0) tan ��g=2; (4)

and
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with Z0 =
p
�0=�0 being the impedance of free space, Zn

being the impedance of the “cavity” wave guide and Z� is the
impedance of the “iris” waveguide.

By separating out the dominant termN in the sum over n, one
can cast Eq. (3) into a variational form for the frequency, with the
trial function being u(r). The result is the implicit equation for
the frequency

tan �NL

�N
=
X
�

X
�

KN�(M
�1)��KN�: (6)



Here M�� is a symmetric matrix defined by

M�� = �
X
n6=N

0

�n cot �nL Kn�Kn�

+
X
�

�� tan ��g=2K�F�K�� (7)

and

Kn� �
Z
S1

dS en � f� ; K�� �
Z
dS e� � f�: (8)

Note that we are looking at modes close to the cavity modes cor-
responding to �NL = `� or k2N` = `2�2=L2 + 2N . Since the
frequency k is also contained inM��, Eq. (6) must be solved by
iteration.

We obtain the expression for the frequency change in the cav-
ity and therefore generalize the concept of the static polarizabil-
ity to a generalized polarizability by considering a mode which
has a normal electric field, but no tangential magnetic field at the
center of the hole (for example the TM0N` mode) and write

� �
k2 � k2M
k2ME

2
M (0)

: (9)

Similarly we obtain the generalization of the susceptibility for a
circular hole (for example the TM1N` or TE1N` mode)

 �
k2M � k2

k2H2
M(0)

: (10)

We obtain k from Eq. (6) and � or  , for that frequency, from
Eq. (9) or (10). Clearly the mode identification M stands for
0N` or 1N` as appropriate.

III. POLARIZABILITY FOR A CIRCULAR IRIS
HOLE

We now specialize to TM0n waveguide modes in a circular ge-
ometry in order to obtain the polarizability[1]. The cavity radius
is b and the iris radius is a and we use the complete set

f�(r) = e�(r) = �r��(r); (11)

with

�n(r) =
J0(snr=b)p
�snJ1(sn)

; ��(r) =
J0(s�r=a)p
�s�J1(s�)

: (12)

Here sn;� are the roots of the equation J0(sn;�) = 0. Evaluat-
ing the kernels and matrices in Eq. (8) and Eq. (7), the frequency
can now be calculated using Eq. (6) and the symmetric polariz-
ability using Eq. (9). Similarily we can obtain the asymmetric
polarizability.

The polarizabilities obtained in this way will be functions
of the geometrical parameters a=b; g=a; a=L, and `;N of the
TM0N` cavity mode. In order to tie the polarizabilities to the ge-
ometry of the hole alone, it is necessary to take the limit for large
b and L, but with finite frequency. This can be accomplished by
letting b; L!1, but keeping s � sNa=b t � `�a=L finite by
also allowingN; `!1.

IV. SUSCEPTIBILITY FOR A CIRCULAR HOLE
We now must use the waveguide modes TM1n and TE1n for

our complete set in the pipe region. Specifically we have

en = �r�n;

�n =

r
2

�

J1(pnr=b) cos �

pnJ0(pn)
for TM1n modes; (13)

en = ẑ �r n;

 n =

r
2

�

J1(qnr=b) sin �p
q2n � 1J1(qn)

for TE1n modes; (14)

where pn;� are the roots of J1(pn;�) = 0. In the iris region

e� = �r��;

�� =

r
2

�

J1(p�r=a) cos �

p�J0(p�)
for TM1� modes; (15)

e� = ẑ �r �;

 � =

r
2

�

J1(q�r=a) sin �p
q2� � 1J1(q�)

for TE1� modes; (16)

where qn;� are the roots of J 01(qn;�) = 0. Once again, the ker-
nels and matrix elements can be calculated, but now n and � can
be either TM or TE inK 

n� , where the superscript denotes sus-
ceptibility. The frequency is again obtained from Eq. (6), but the
susceptibility requires using Eq. (10).

V. DISCUSSION OF THE ANALYTIC RESULTS

The variational formulation also allows us to obtain analyti-
cally the first order correction ink2a2 for a hole in a plate of zero
thickness from the knowledge of the correct field solutions for
ka = 0. In the case of polarizbility we obtain the following ap-
proximate analytic form

�N` �=
4a3

3

�
1�
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5
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5
+
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�
: (17)

In the case of susceptibility we obtain
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where p � pNa=b; q = qNa=b. It appears that the approximate
forms for polarizability and susceptibility give reasonably accu-
rate results even for values of ka as large as 1.

The coefficients of the leading terms in Eqs. (17)-(19) for
g = 0 and small ka appear to be well confirmed. Moreover, the
coefficients of the terms in first order ink2a2 and the coefficients
of the leading imaginary terms are the same as those obtained by
Eggimann[2] .



Figure. 1. Real part of scaled polarizability ~� vs. s2 for various
ka, with g=a = 0.

Figure. 2. Real part of scaled susceptibility ~ vs. p2 (for TM
mode) or q2 (for TE mode) for various ka, with g=a = 0.

VI. NUMERICAL RESULTS FOR A HOLE IN A
PLATE

We present the results in a form suggested by the predictions
for g = 0 (zero wall thickness) and small ka, s in Eq. (17).
Specifically, we define ~�(ka; s) � �=(4a3=3) and plot the real
part of ~� vs. s2 for various values of ka in Fig. 1. A similar pre-
sentation is provided for the real part of the susceptibilities. We
define ~ �  =(8a3=3) and plot ~ vs. p2 (TM) or q2 (TE) for
various values of ka in Fig. 2.

For the wall with finite thickness, the polarizability and sus-
ceptibility seen within the cavity are given by[1] �in = �s +
�a ;  in =  s + a, while the polarizability and susceptibility
seen outside the cavity are given by �out = �s � �a ;  out =
 s� a. Here the subscripts s and a denote the solutions of the
symmetric and antisymmetric potential problems[1] . In Figs. 3
and 4, we show ~�in and ~ in as functions of g=a for various ka.

The logarithmic plots of ~�out and ~ out become linear with
slopes �s1 = �2:405 and �q1 = �1:841, respectively, as ex-
pected.

VII. SUMMARY
We have defined a generalized polarizability and susceptibil-

ity of a hole for finite wave length in terms of the frequency shift
of the associated cavities due to the hole. In addition we have
constructed a variational form for these frequency shifts, assur-

Figure. 3. Real part of scaled polarizability ~�in vs. g=a for var-
ious ka, with s = 0.

Figure. 4. Real part of scaled susceptibility ~ in vs. g=a for var-
ious ka, with p = 0 (for TM mode) or q = 0 (for TE mode),
where the curves are the same for both TM and TE modes.

ing good convergence for our numerical calculations. We then
allow the cavity dimensions to be infinitely large, enabling us to
obtain accurate numerical values of the polarizability and sus-
ceptibilities of a circular hole in an infinite plate of finite thick-
ness. Then we obtain numerical results for various values of ka,
g=a. The approximate analytic forms are given by Eq. (17) for
the polarizability and by Eqs. (18), (19) for the susceptibility.
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