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Abstract

We calculate a generalized polarizability and susceptibility of a
circular hole in a thick metallic plate as a function of hole di-
mensions and wavelength. In particular, we construct a varia
tional form which allows us to obtain accurate numerical results
with a minimum of computational effort. Numerical results are
obtained for a variety of hole dimensions relative to the wave-
length. In addition, analytic results are obtained and shown to
be accurate to second order in theratio of the hole dimension to
the wavelength for a vanishingly thin wall.

I. INTRODUCTION

The penetration of electric and magnetic fields through ahole
inametallic wall playsan important rolein many devices. Inan
accelerator, such holesin the beam pipe serveto alow access for
pumping, devices for beam current and beam position measure-
ment, coupling between cavities, etc. In much of the early work
the hol e dimensions were considered to be very small compared
tothewavelength. The purpose of this paper isto extend thecal -
culation to include the effects of finite wavelength, although we
gtill confine our attentionto wavelengthsno smaller thanthehole
dimensions.

We redefine the conventional static treatment of polarizabil-
ity and susceptibility in terms of the cavity detuning, defining a
new generalized polarizability and susceptibility. Inthisway, we
include the frequency dependence of the polarizability and sus-
ceptibility as well as the contributions of higher multipole mo-
ments of the hole. But these generalized polarizability and sus-
ceptibilitesshould only be seen asintermediate vehiclestorelate
the coupling integral sof interest to the detuning of the cavity by
the hole. We will obtain an expression for the detuning of the
modes of the symmetric cavity structure due to the presence of
the hole. The symmetric cavity structure consists of two identi-
cal cavities, each of thelength . and radiusb. Clearly the modes
will be either symmetric or antisymmetric in the axia coordi-
nate. Our analysiswill be limited to the modes near the TMyn¢,
TM;n¢ and TE; n¢ modes of the unperturbed pillbox.

1. GENERAL ANALYSIS

Our analysis can be generalized to include cavity regions and
irisregionsof arbitrary crosssection. Tekingz; = 0 tobetheleft
end of theleft cavity, we can writethetransverse e ectric field as
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wherer standsfor thetransverse coordinates x and y, and where
the modes e, may be either TM or TE. Here 32 = k? —
v2, wherey2 are the eigenval ues of the two dimensional scalar
Helmholtz equation in the cavity region with the appropriate
boundary conditions. We use Latin subscripts(n, m, N, - - ) for
the cavity region, and kc¢/2x isthe frequency.

Thetransverse eectric field in theirisregion can similarly be
written as

Z be cos 61, 29
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where z, = 0 isnow the center of the irisregion, and where we
use Greek subscripts (v, i, o, - - ) for theiris region. Equation
(2) is appropriate for the modes in our symmetric structure for
which E(f) isevenin z,. For thosemod&whereE(f) isoddin
22 we need to replace thecosines by sinesin Eq. (2). Weexpress
thecoefficientsa,, and b, intermsof E | (r) = u(r) a theinter-
face between the cavity and theiris(z1 = L, z2 = —g/2). We
then writethetransverse magnetic field in each region. Equating
thetransversemagneticfieldat z; = L, zo = —¢/2 intheregion
S1 leadsto theintegral equation for the unknown function ()
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with Z, = +/po/€o being the impedance of free space, 7,
being the impedance of the “cavity” wave guide and 7, is the
impedance of the“iris” waveguide.

By separating out the dominant term N in thesum over n, one
can cast Eq. (3) intoavariational formfor thefrequency, withthe
trial function being «(r). Theresult is the implicit equation for
the frequency
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Here M,,,, isasymmetric matrix defined by
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Notethat we are looking at modes close to the cavity modes cor-
respondingto By L = {m or k%, = >z /L% + 7% Since the
frequency & isalso containedin A,,,,, Eq. (6) must be solved by
iteration.

We obtain the expression for the frequency change in the cav-
ity and therefore generalize the concept of the static pol arizabil -
ity to a generalized polarizability by considering a mode which
hasanormal dectric field, but no tangential magnetic field at the
center of the hole (for example the TMn, mode) and write
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ki B3 (0)
Similarly we obtain the generalization of the susceptibility for a
circular hole (for example the TM 1, or TE;n, mode)
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We obtain k from Eq. (6) and y or ¢ , for that frequency, from
Eqg. (9) or (10). Clearly the mode identification M stands for
ONfor 1N ¢ asappropriate.

[11. POLARIZABILITY FOR A CIRCULAR IRIS
HOLE
Wenow specializeto TM,, waveguide modesinacircul ar ge-

ometry in order to obtain the polarizability[1]. The cavity radius
isb and theirisradiusis a and we use the complete set

fu(r) = eu(r) = _V¢l/(r)’ (11)
with
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Here s, ,, are theroots of the equation Jy (s, ;) = 0. Evaluat-
ing thekernelsand matricesin Eq. (8) and Eq. (7), thefrequency
can now be calculated using Eq. (6) and the symmetric polariz-
ability using Eq. (9). Similarily we can obtain the asymmetric
polarizability.

The polarizabilities obtained in this way will be functions
of the geometrical parameters a/b,g/a,a/L, and {, N of the
TMgn¢ cavity mode. Inorder to tiethe polarizabilitiesto the ge-
ometry of theholealone, itisnecessary totakethelimit for large
b and L, but with finite frequency. This can be accomplished by
lettingb, L — oo, butkeeping s = sya/b ¢ = ¢ra/L finiteby
adsoalowing N, { — .

V. SUSCEPTIBILITY FOR A CIRCULAR HOLE

We now must use the waveguide modes TM,,, and TE,, for
our compl ete set in the pipe region. Specifically we have
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where p,, , aretheroots of Ji(p, ) = 0. Intheirisregion
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where ¢,, , are theroots of J{ (¢, ) = 0. Once again, the ker-
nelsand matrix elements can be calcul ated, but now » and v can
beeither TM or TEin K'¥,,, wherethe superscript «» denotes sus-
ceptibility. Thefrequency isagain obtained from Eq. (6), but the
susceptibility requires using Eg. (10).

V. DISCUSSION OF THE ANALYTIC RESULTS

The variational formulation aso allows us to obtain analyti-
cally thefirst order correctionink?a? for aholein aplate of zero
thickness from the knowledge of the correct field solutions for
ka = 0. In the case of polarizbility we obtain the following ap-
proximate analytic form

43 k2a?  s7 4
~ — [1- -+ Lkd ). 17
ANE= 3 ( 5 5 Tor a) (n
In the case of susceptibility we obtain
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wherep = pya/b, ¢ = qnya/b. It appears that the approximate
formsfor polarizability and susceptibility give reasonably accu-
rate resultseven for values of ka aslargeas 1.

The coefficients of the leading terms in Eqgs. (17)-(19) for
g = 0 and small ka appear to be well confirmed. Moreover, the
coefficients of thetermsinfirst order in k2«2 and the coefficients
of theleadingimaginary terms are the same as those obtained by
Eggimann[2] .
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Figure. 1. Red part of scaled polarizability y vs. s? for various
ka,withg/a = 0.

M
1.4 TSI
e [ ™
134 T - TE
m£ \l'\-\;v . 5 \\\
S- t2d T - e
Q s o kam0.7 T~ ka=0.9
O 1.1+ T - ~ T
[ i e ka=05 s “{ N
1.0 I kas0.3
ka=0.1
0‘9 T T i t 1
0.0 0.2 0.4 0.6 0.8 1.0

p> (TM), ¢’ (TE)

Figure. 2. Redl part of scaled susceptibility ¢ vs. p? (for TM
mode) or ¢? (for TE mode) for various ka, with g/a = 0.

VI. NUMERICAL RESULTSFOR A HOLE IN A
PLATE

We present the results in a form suggested by the predictions
for ¢ = 0 (zero wall thickness) and smal ka, s in Eq. (17).
Specifically, we define x (ka, s) = x/(4a®/3) and plot the real
part of y vs. s? for variousvaluesof ka inFig. 1. A similar pre-
sentation is provided for the real part of the susceptibilities. We
define = +/(8¢/3) and plot ¢ vs. p? (TM) or ¢* (TE) for
variousvauesof ka inFig. 2.

For the wall with finite thickness, the polarizability and sus-
ceptibility seen within the cavity are given by[1] v = xs +
Xa, Yin = s + ¢4, whilethe polarizability and susceptibility
seen outsidethe cavity are given by xout = Xs — Xa 5 WYout =
s — 1. Here the subscripts s and a denote the solutionsof the
symmetric and antisymmetric potential problems[1] . InFigs. 3
and 4, we show y;,, and +;,, as functionsof ¢/a for various ka.

The logarithmic plots of x,.: and #,,; become linear with
slopes —s; = —2.405 and —¢; = —1.841, respectively, as ex-
pected.

VIl. SUMMARY

We have defined a generalized polarizability and susceptibil-
ity of aholefor finite wave lengthin terms of the frequency shift
of the associated cavities due to the hole. In addition we have
congtructed a variational form for these frequency shifts, assur-
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Figure. 3. Real part of scaed polarizability x7;,, vs. ¢/a for var-
ious ka, with s = 0.
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Figure. 4. Real part of scaled susceptibility «/;,, Vs. ¢ /a forvar-
ious ka, withp = 0 (for TM mode) or ¢ = 0 (for TE mode),
where the curves are the same for both TM and TE modes.

ing good convergence for our numerical calculations. We then
allow the cavity dimensionsto be infinitely large, enabling usto
obtain accurate numerical vaues of the polarizability and sus-
ceptibilitiesof a circular hole in an infinite plate of finite thick-
ness. Then we obtain numerical resultsfor variousvalues of ka,
¢/a. The approximate analytic forms are given by Eq. (17) for
the polarizability and by Egs. (18), (19) for the susceptibility.
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