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Abstract Bothin the iris hole and in the pipe cavity, the electromagnetic

elds are superpositions of source fields and pipe fields which can

_ fi
I(;leztreeggm Sqaéﬂirrgl]iiuvg;;f) gr?éntjr(:re]gv:r\slaelrilri“oen dillr:cgggftg tchefl expanded as sums over the normal modes in relevant regions.
9 P use Latin letters as the subscripts of the quantities defined

Iris in a beam pipe. Implementation of this calculation led tfﬁ the pipe cavity, and Greek letters for those defined in the iris

rapidly converging and accurate values for these impedani;] te. The time dependent factor €xpt) attached to all fields
for a circular beam pipe and iris. We have now constructed an '

analogous variational form for the longitudinal and transverseomltted for simplicity.
. L . . N In the pipe cavity region, the source fields are generated by
impedance of periodic irises in a beam pipe, with similar O« Lltrarelativistic charaed particle b : |

. ; : ged particle beam moving near or along
vergence and accuracy properties. In this case the numermﬁI]Ié( axis of a smooth pipe. Specifically, in the frequency domain
calculated impedance is imaginary, except for isolated narmow, e ' ’
resonances corresponding to modes propagating with the veloc- ' E.— 7.4 5 _jkz 1
ity of light. The real part of impedance is obtained by using 0=2ZoHox 2= A v X, (1)
causality. Analysis and numerical results are discussed and piere Z, is the free-space impedancdy is a constant, and
sented. Z is unit vector in positivez direction. v/, is defined asy; =
X % +§/%. The source field potentigl is a function of transverse
coordinates which satisfies the boundary conditions on the pipe
surface.

In a previous publication[1], we calculated both the longitu- The pipe fields contain both left and right traveling waves with
dinal and transverse coupling impedance of an iris in a beawave numbep,. Floquet's theorem says that in a periodic struc-
pipe. In particular we constructed a variational formulation fdure the electromagnetic fields in theth cell must be identical
the impedance, where the trial function was the transverse elerthose in theém + 1)th cell except for a constant phase factor.
tric fields at the two junctions of the beam pipe and the iri§Ve then write:

The numerical implementation of this formulation proved to be
extremely well convergent for a circular beam pipe and iris, re-  —% —e k2| y + Z e e kML A e Ifn@=mb)
quiring only a few terms in the expansion of the trial functions n
in terms of TM and TE transverse modes in the iris region. _
; ; e jn(z—mL)

In this work, we construct a corresponding variational formu- +Bne 1 2)
lation for the longitudinal and transverse impedance of a beany 3
pipe loaded with periodic irises. The numerical implementation Ao
for a circular beam pipe with periodic circular irises is again well
convergent. The numerically calculated impedance in this case is _B,elfr@mby. 3)
imaginary, except for isolated narrow resonances corresponding
to modes propagating with the velocity of light. However, thelere,e, are the transverse electric normal modes defined on the
real part of the impedance is retrieved from the information tlaeoss section of the pipe region (lts are&ist+ S.), that means
imaginary part carries, in the form of a sum of delta functions g , 5 €n - €vdS = 8ny, Ay and B, are expansion coefficients,

andain is k/ B, for TM modes,8,/k for TE modes.
Il. Analysis In the iris hole, the source field potential is replaceddby

_ _ ) ) _ which satisfies the boundary conditions on the hole surface, and
We will consider a beam pipe of arbitrary cross section load@gk write:

with periodic irises of arbitrary cross section, both homogeneous
in the axial direction. The planes involving the iris side walls L _ oike V.04 Z eﬂe—kaL[Cne—]ﬁu(z—mL)

|. Introduction

— efjkz Vi x + Z en)\nefjkmL[Anefjﬂn(z—mL)
n

are perpendicular to the beam pipe axis. We denote the period of Ay
irises ad_, and the width of irises ag. We consider thenthiris

and its foI'Iowing pipe cavity as thmth cell of IgngthL. We sgt +Dpelfu@mby, ()
the coordinate origin at the center of therothiris and the axis - .

of the pipe as the axis. The cross sectional area of the iris hole£oM L X 2 _ —jkz V.o + Z e, 6 KML[C, e~ Jfuz—mb)
is denoted byg, while S, represents the side walls of the iris. Ao

m

n
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Here,e, are the transverse electric normal modes defined on the

cross section of the iris hole(Its areaSg), that meangfsl e, -
e,dS=34,,,C, andD, are expansion coefficientg,, is the
wave number in the iris hole, arij, is k/g,, for TM modes,
B,./k for TE modes.

By introducing two unknown fieldt) andV defined as the
transverse electric fields @&, which can be expanded in terms

[1l. Numerical Results

As an example, we use the formulato calculate the longitudinal
and transverse impedance of a circular pipe loaded with circular
irises. We obtain results for a wide range of structure param-
eters. We find that our computer code is well convergent over
a large range of frequency for those structures. The calculated
mpedance is imaginary, except for isolated narrow resonances.

of &,, and matching electromagnetic fields at the junctions @},q ,jtions of the resonances are the intersections of dispersion

irises and pipe, we eventually get two integral equations:

/fZH-UdSJr/ K 12VdS= Gy, )
S S
fr?lz-Uds+/ K 2 VdS= Gy. )
S S
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Here K 11, K 12 andK »; are tensor integral kernels:

|(211= Ze

2
d nenm[COSk(L —9g) —cospn(L — 9)]

21,
M reoskg —
+;eﬂe{”jsinﬁﬂg[cos g — cosg,.gl, (8)
e 2hnsink(L — @) 21, sinkg
Ko=) ene,—————> 4+ ) g "= (9
12 Z e SnE L —0) Z S sngg O
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K 2o= Z ene(nm[COSk(L - g) + COSﬂn(L - g)]

n

2k,
+ XM: eﬂe/um[coskg + cosg,.g]. (10)
And Gy andGy are respectively:
2hn(on + Xn)
Gu = = T AV [cosk(L — g) — L —
U Xn:enj S (L gy [OSK(L — @) —cospn(L — 9],
(11)
2\ + xn) Sink(L —
Gy = Zen n(on + xn) ( ) —2v, p, (12)

= sinBn(L —9)

wherex, = [q Vix -€dS pn = [q Vip-€dS andpis
definedap = x —o.

curves with the light line. These are the resonant modes propa-
gating with the velocity of light in the periodic structure. Fig. 1
presents the longitudinal impedance for a sample structure(The
radius of beam pipe ig, the radius of iris hole i®. In our ex-
ample, the ratios df/a = 0.45,L/a = 1.1, andg/a = 0.35.).

The resonant modes and loss factors obtained from our calcula-
tion agree well with those from the well known computer codes
KN7C and TRANSVRS [2].

V. Discussion

The missing real part of the impedance can be retrieved from
the imaginary part by using causality. Taking the longitudinal
case as an example(Noté:= R+ jX.),

X“ (k) . ank

Zy 4= kZ—k2

(16)

where alla,’s are greater than zero to satisfy Foster’'s Reactance
Theorem[3]. If we now move the poles to a position slightly
above the real axis, we can write the impedance for very small
€. We use the relatio# (—k) = Zﬁ*(k) and write the imaginary
part in the form:

Z,(k) jank

= —_ 17
Zo Xn:k,%—kz—i—je (7

By using lim._o[e/(e? + x?)] = n8(x), we get

RH k) T anke

Zo eI'LnoXn: (k2 — k?)2 + €2

=7 ) aked(k? = k3. (18)
n

We can therefore use the computed behaviof gk) near each

Finally, the impedance of one cell of this periodic structuresonance at = k, to determinea, by fitting Zo/ X (k) as a

can be expressed as

Z(K) = Go(K) + Zyar (K), (13)

linear function ofk — k, neark = k,, and from thesey,’s to
obtain the real part of the impedance as a sum of delta functions
with specified coefficient. Clearly these delta functions will be
broadened if the wall conductivity is finite. Fig. 2 presents the

where the explicit temGo(k) is a sum over the indeces of thedelta functions of real part longitudinal impedance[4]. The first

normal modes in the pipe region, aég,, (k) has been put into

the variational form:

[/s, Gu - UdS+ [g Gy -V dSP

Zyar (k) = M ’

(14)

whereM is

M=/d8/ dSu.ﬁll-u+2/ dS/ dSU-K 15V
S S S S

+/ dS/ dSV. K V. (15)
S S

10 resonances out of the 60 shown in Figs. 1 and 2 are identified
in Table 1.

It appears that the resonanceg at k, correspond to the fre-
guencies at which propagation of azmuthally symmetric modes
through the structure produces a phase advanke per period
of lengthL, in order to be in synchronism with the particle mov-
ing with velocityc. Thisis confirmed from the dispersion curves
calculated with our geometry, using the program KN7C.

The total longitudinal impedance is therefore

Z,(k
210 S ek -k + kY P (1)
VA n ki —k



where the sum is over all values ofcorresponding to positive References
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kb an(Zo)
1.16131| 3.75845E-1
2.23213| 9.99812E-2
2.47150| 1.21422E-6
3.10663| 4.22596E-6
3.91728| 3.27981E-2
3.94055| 3.18982E-2
3.99824 | 3.14555E-2
4.48055| 2.16335E-2
5.02304| 5.50932E-2
5.33543| 2.46804E-4

Im{Zy/Z,]

-0.5 -

-1.0

Figure. 1. The imaginary part of longitudinal impedance for
b/a=0.45,L/a=11,g/a=0.35.
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Table. 1. The first 10 resonances of longitudinal impedance for
b/a=0451L/a=11 g/a=0.35.
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kb bn(Zo)
1.57045| 7.10124E-1
1.75736| 3.14108E-2
2.31282| 1.23584E-1
2.79476| 2.20642E-2
2.98274| 1.13804E-2
3.24850| 6.87317E-3
3.66906| 4.27322E-2
3.91339| 3.63055E-3
4.08240| 9.94933E-3
4.21653| 8.24202E-3
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Table. 2. The first 10 resonances of transverse impedance for

Figure. 2. The real part of longitudinal impedance iga = b/a=0.451L/a=11,g/a=0.35.
0.45,L /a = 1.1,g/a = 0.35.
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This time we satisfyZ, (—k) = —Z7 (k), and the resonances
correspond to the propagation of modes proportional t@cos
sing, with a phase advance ki. per period. We present the first
10 resonances of the transverse impedance in Table 2.
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