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Abstract is evident, for example, for a beam with a uniform charge den-

A new analytic model is presented which accurately estimatseltsy' For this caseq vanishes at the beam ends, and bidth)

the radially averaged axial component of thaapcharge field eXpressions unphysically become singular there.

: : . : o - Inthis paper, a Green's function is used to derive a more gen-
of an axisymmetric heavy-ion beam in a cylindrical beam pli%

The model recovers details of the field near the beam ends t ra{l expression for_ the_rgd|ally averaged axwgl space-charge field
) of a nonrelativistic ion beam centered in a perfectly con-

are overlooked by simpler models, and the results compare oeulf:ting cylindrical pipe. The expression is specialized to beams,

to exact solutions of Poisson's equation. Field values are Sh‘ﬂ’t{g those in inductioraccelerators, that are muabniger than

for several simple beam profiles and are compared with Vallfﬁ%ir radius, and a closed-form approximation(fd,) is ob-
obtained from simpler models. '

tained for the class of beams with R 2 0.05 at all points.
This calculation is done in the beam frame, but since HIF beams
I. INTRODUCTION are nonrelativistic, £, ) is effectively the same in the laboratory

frame. The importance of beam-radius variation is illustrated

Longﬂu@mal _ confinement  of _ space-gharge-domlnat plotting the spce-charge field for several beam profiles, and
beams in inductiomccelerators requires detailed knowledge Qf¢ its of the new model are compared with predictions of the
the beam space-charge field. Unlike raftiequencyacceler- simpler g-factor models.

ators, the accelerating fields afductionaccelerators provide

no longitudinal focusing, so time-varying electric fields must be Il. DERIVATION

added to the acceleration field in at least songttion mod-

ules to balance the space-charge force. For the ion beams c_ohoﬁ gen_eral expressior_l fqi. ) is derived from z‘iGreen_'s func-
sidered for heavy-ion fusion (HIF), which are typically meter%_lOn eq“'Vf?"e”t to Fhat in Ref. [3]'_ The _Green S functiarfor :
long and only a few centimeters in radius, these Iongitudinél-e potential of a ring of charge with unit magnitude centered in

control fields, referred to here as “ears,” are highdn-linear a perfectly (_:ondu_cting_ pipe Of radius i_s obtained from Pois-
and must be calculated from the measured beam quantities fiR@'s equation, given in Sl units for this case by

current and radius. 9 oo 1 / /
In HIF experiments [1] and some analytic work [2], the VIG(r 20 A) = eo_ré(r -z =), (3)

beam space-charge field has been calculated from a simple one- . . _
) ; : . .. Where the primed coordinates denote the source location, and
dimensional model. By assuming axisymmetry and a uniform . ; ) : ;
. ; . -_unprimed coordinates are field points. A straightforward solu-
charge densityp, it can be shown that neglecting the axial | gives

derivative in Poisson's equation leads to the simple result, in

v aat /
Sl units, that G(r, z0', )
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whereJ; and.J, are Bessel functions of the first kind, and
Here,A = mpa? is the beam line-charge densityis axial dis- denotes theath zero of J,. The potentialy for any axisym-
tance in the beam frame, and the angle brackets denote awggtric charge distribution with densipfr, z) is then found by
aging over the beam cross section. The logarithmic factoriimtegratingG over all »* and 2/, and the corresponding axial
Eg. (1) is call the “geometry factor” or “g-factor,” andand R space-charge field is given By, (r, z) = —9¢(r, z)/0z. When
in the term denote the radii of the beam and the beam pipe peis assumed to be independentroithin some radius:(z),
spectively. A slightly more sophisticated treatment, includirtpen thek, expression is trivially averaged overgiving
the possible axial variation i gives

2
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These simple expressions are not expected to be valid at the. dz'sgn(z — 2') = J1(Apd') exp(—Ay |z — 2'])
beam ends because neglecting the axial derivative in Poisson's 1) a
equation is clearly invalid there. The failure of gs. (1) and (2) (5)

) Here, the notationt,, = «,,/R has been introduced, anchas
*The research was performed under the auspices of the U. S. Department of dtob tthe b idpoint that th d
Energy by Lawrence Livermore National Laboratory under Contract No. JEEN assumed (o be zero at the béam midpoint, So that the enads
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The integral in Eq. (5) cannot in general be evaluated in closttht vanishes smoothly at the beam ends. For the equilibrium
form. However, for typical beams from inductiaccelerators, axisymmetric beams considered herea, and the normalized
the axial scale lengths afandX are much longer than the expo-edge emittancey are related approximately by the steady-state
nential scale lengthi ! for all ». This short exponential scaleenvelope equation
length allows us to expand the integrand linearly about:the )
value where the integrand magnitude is maximum. Equating 9 48 Fen ~ 0. (10)
the derivative of the integrand with respect:toto zero gives 412 a a?

a transcendental equation for this integrand extremum. Rathgl,e oo is the phase advance per lattice periddin the ab-
than solve this equation numerically, we simplify the equatiafyce of space-charge effects, and
by assuming that the Bessel-function arguments are small, as

is appropriate wheni,,«’ S 1. The resulting equation for the . 1 2eA _ Ki (11)
location of the integrand peak is " dmeg fEMc2 T 2
1 —sgn(z—2")A ¢ =0, g) Is the beam perveance, with being the beam axial velocity

scaled by. Four cases are studied here:
where((z) = (L»/2) —|z| is the axial distance from the nearesE
beam end. Examination of Eq. (7) shows that the integrand p
is

1) Uniform radius. Hereg y is obtained directly from Eq. (10)
increases toward the beam ends to balance the decreasing
transverse space-charge force.
"~ max(C, Ay = Cn. (7) ) P ) g ) ) )
o ) ) ) (2) Uniform normalized emittance. For this case, Eq. (10) is
The significance of Eq. (7) is that the integrand is expandggved trivially fora?, giving
about the exponential maximum except very near the ends. The

approximation leading to Eq. (7) proves to be excellent in cases , 207 | A LA B2e2q2 1/2
wherea(+1;/2) < R, and it still is usable for larger beam-end ~ ¢* ~ —& K 7 + (A 7 + =7 ) (12)
radii because varies slowly near the beam ends, so errors,in 0

have little consequence. (3) Uniform “transverse temperature”. Even though the enve-

_ After linear expansion of the integrand abayt the integral |ope equation Eq. (10) is derived under the assumption that the
in Eq. (5) is evaluated in a straightforward manner and, aftgéam is cold in the transverse plane, the transverse tempera-
some algebra, gives the following Bessel-series expression §@fe of a bean is in general proportionalfo= ¢2, /a2, If this

(E.): temperature-like quantity is treated as uniform along a beam,
. 1 & (Aia) Ji(Ana) Eg. (10) gives
(B = 28 2 =z e AL
\ "= a’ m — (K—z + T) : (13)
~{sgn(z)—nJ1(Anan) exp(—A,() 70 A
L o " )\ g (4) Uniform charge density. If the charge dengitis assumed
_ i _nroe uniform along the beam, then
2 [Ana P Ji(Ana) e Jz(Ana)L fn(z)}, (8) g
" A
wherea,, and),, are values af,, and a® = o (14)

falz)=1— 1 [1 4 max(1, 4,¢)] exp(—A, (). (9) and the normalized emittaneg; from q. (10) vanishes at the
2 beam ends along with anda.

Here, the fact thati,, L, > 1 has been used to discard exponen- Althoughthese simple profiles are unlikely to match thatin an
tially small contributions from the farther of the two beam end§xPerimental beam, they illustrate the sensitivity of thacep
This expression is found to be in excellent agreement with thearge field to the beam radial variation. Fig. 1 shows field
exact expression Eq. (5) for every case examined. values calcglated for_bea_ms Wlt_h |dent!cal parameters and line-
Eq. (9) is an important result of this paper, but the summatiGRarge profiles, but differing radial profiles. The parameters are
in general requires laborious numerical evaluation. In the fdfl0se of a small recirculating inducti@ucelerator being built
lowing section, however, it is shown that the expression may BEthe Lawrence Livermore National Laboratory [4], except that

approximately evaluated for beams with sufficiently large radfie midsection of the beam has been shortene_d to highlight field
at the beam ends. changes near the ends. As expected, one finds that the peak

space-charge field increases for profiles that have smaller end

I1l. SPECIAL CASES radii. It is also evident thatZ.) for the uniform-density is
qualitatively different from the others. For the cases with a fi-
nite beam-end radius, the field magnitude is seen to drop sig-

The radiuse of the axisymmetric beam and the line-chargeificantly in a narrow region at the beam end. In this region,
density A in Eq. (9) are in general independent quantities revhich has a characteristic length®f ., the absence of charge
lated by the beam transverse emittance anchticelerator lat- outside the beam reduces the axial field, and at the endpoints,
tice. In this work, X is taken to be any non-negative functiorthe field is reduced by approximately half. In contrgdt, )

A. Beam Profiles
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Figure 1. Radially averaged space-charge field for beams Wli:th > Radiall d h field f
various radial profiles but the same line- charge density. \gure 2. - Radially averaged space-charge field for a constant
emittance beam calculated using various approximations

Bessel serles ~200 |
new analytic model
simple g-factor
general g-factor

H

-400

for the uniform-density case varies monotonically near the end ]

due to the rapidly decreasing radius. Another distinction of tffél- (15) can be used to evaluate Eg. (8) without further approx-
uniform-density case is that about 250 terms are required fB1ation, and the result exactly recovers the general g-factor ex-
convergence of the Bessel series in Eq. (8), whereas the offi&8Sion Eg. (2). It follows that Eq. (2) gives’. ) accurately in
cases require between 20 and 40 terms. This difference ariéiésinterior of any beam in which anda vary on length scales
because the beam radial profilepisorly fit by a Bessel series that are long compared with/«;. The expression only fails
whena/R is small, and many terms are needed for an adequifithin a region a few timesz/«, in length at each end.

representation. The various approximate expressions {éi ) are compared
in Fig. 2 for a beam with a uniform normalized emittance and
B. Analytic Approximations the same lattice and beam parameters as the beams shown in Fig.

1. The Bessel-series approximation has been compared with
the exact integral expression Eq. (5) at selected points along the
beam and is found to agree within 1% everywhere. The new
analytic expression Eg. (16) deviates from the Bessel-series re-
sult by a few percent near the peak magnitudéof), but it
nonetheless reproduces the main features of the more exact ex-
it ssion. Both curves overlay the general g-factor model away

) the ends, as expected. The curve generated from the simple
g-élpctor expression Eq. (1) deviates from the other approxima-
tions in the beam interior, underlining the fact that variation of
the beam radius cannot in general be ignored.

Since the series Eq. (8) converges rapidly whgr 2 0.05
for all z, it is sensible to approximate tH&’,) expression by
settingn = 1 in f,, and in the exponential factor. Also, sinee
varies only slightly between the ends agidfor such beams,
leading Bessel factor and the derivativesecofind A can all
be evaluated af; with negligible error. These approxima-
tions leave two Bessel series that, remarkably, can be exar(?
summed. Expressed generally, these Bessel sums have bee N
ified numerically over the range> = > 0:
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This expression is a numerically tractable generalization of and S. S. Yu, “Progress Toward a Prototype Recirculating
Eg. (2) and is a very good approximation to the Bessel-series Induction Accelerator for Heavy-lon Fusion,” in these pro-
expression Eq. (8) for most experimental beams. As expected, it ceedings.
gives an inaccurate buon-singular result for uniform-density
beams.

Sufficiently far from the beam ends, the exponentials in
Eq. (8) vanish, and,, = (. In this case, the Bessel sums in



