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Abstract

A new analytic model is presented which accurately estimates
the radially averaged axial component of the space-charge field
of an axisymmetric heavy-ion beam in a cylindrical beam pipe.
The model recovers details of the field near the beam ends that
are overlooked by simpler models, and the results compare well
to exact solutions of Poisson's equation. Field values are shown
for several simple beam profiles and are compared with values
obtained from simpler models.

I. INTRODUCTION

Longitudinal confinement of space-charge-dominated
beams in inductionaccelerators requires detailed knowledge of
the beam space-charge field. Unlike radio-frequencyacceler-
ators, the accelerating fields of inductionaccelerators provide
no longitudinal focusing, so time-varying electric fields must be
added to the acceleration field in at least some induction mod-
ules to balance the space-charge force. For the ion beams con-
sidered for heavy-ion fusion (HIF), which are typically meters
long and only a few centimeters in radius, these longitudinal-
control fields, referred to here as “ears,” are highlynon-linear
and must be calculated from the measured beam quantities like
current and radius.

In HIF experiments [1] and some analytic work [2], the
beam space-charge field has been calculated from a simple one-
dimensional model. By assuming axisymmetry and a uniform
charge density�, it can be shown that neglecting the axial
derivative in Poisson's equation leads to the simple result, in
SI units, that
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Here,� = ��a2 is the beam line-charge density,z is axial dis-
tance in the beam frame, and the angle brackets denote aver-
aging over the beam cross section. The logarithmic factor in
Eq. (1) is call the “geometry factor” or “g-factor,” anda andR
in the term denote the radii of the beam and the beam pipe re-
spectively. A slightly more sophisticated treatment, including
the possible axial variation ina gives
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These simple expressions are not expected to be valid at the
beam ends because neglecting the axial derivative in Poisson's
equation is clearly invalid there. The failure of qs. (1) and (2)
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is evident, for example, for a beam with a uniform charge den-
sity. For this case,a vanishes at the beam ends, and bothhEzi

expressions unphysically become singular there.
In this paper, a Green's function is used to derive a more gen-

eral expression for the radially averaged axial space-charge field
hEzi of a nonrelativistic ion beam centered in a perfectly con-
ducting cylindrical pipe. The expression is specialized to beams,
like those in inductionaccelerators, that are much longer than
their radius, and a closed-form approximation tohEzi is ob-
tained for the class of beams witha=R �

> 0:05 at all points.
This calculation is done in the beam frame, but since HIF beams
are nonrelativistic,hEzi is effectively the same in the laboratory
frame. The importance of beam-radius variation is illustrated
by plotting the space-charge field for several beam profiles, and
results of the new model are compared with predictions of the
simpler g-factor models.

II. DERIVATION
A general expression forhEzi is derived from a Green's func-

tion equivalent to that in Ref. [3]. The Green's functionG for
the potential of a ring of charge with unit magnitude centered in
a perfectly conducting pipe of radiusR is obtained from Pois-
son's equation, given in SI units for this case by

r2G(r; z; r0; z0) =
1
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where the primed coordinates denote the source location, and
unprimed coordinates are field points. A straightforward solu-
tion gives
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whereJ0 andJ1 are Bessel functions of the first kind, and�n
denotes thenth zero ofJ0. The potential� for any axisym-
metric charge distribution with density�(r; z) is then found by
integratingG over all r0 and z0, and the corresponding axial
space-charge field is given byEz(r; z) = �@�(r; z)=@z. When
� is assumed to be independent ofr within some radiusa(z),
then theEz expression is trivially averaged overr, giving
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Here, the notationAn � �n=R has been introduced, andz has
been assumed to be zero at the beam midpoint, so that the ends
of a beam of lengthLb are at�Lb=2.



The integral in Eq. (5) cannot in general be evaluated in closed
form. However, for typical beams from inductionaccelerators,
the axial scale lengths ofa and� are much longer than the expo-
nential scale lengthA�1n for all n. This short exponential scale
length allows us to expand the integrand linearly about thez0

value where the integrand magnitude is maximum. Equating
the derivative of the integrand with respect toz0 to zero gives
a transcendental equation for this integrand extremum. Rather
than solve this equation numerically, we simplify the equation
by assuming that the Bessel-function arguments are small, as
is appropriate whenAna0 �< 1. The resulting equation for the
location of the integrand peak is

1� sgn(z � z0)An�
0 � 0; (6)

where�(z) = (Lb=2)�jzj is the axial distance from the nearest
beam end. Examination of Eq. (7) shows that the integrand peak
is

�0 � max(�; A�1n ) � �n: (7)

The significance of Eq. (7) is that the integrand is expanded
about the exponential maximum except very near the ends. The
approximation leading to Eq. (7) proves to be excellent in cases
wherea(�Lb=2)� R, and it still is usable for larger beam-end
radii becausea varies slowly near the beam ends, so errors in�n
have little consequence.

After linear expansion of the integrand about�n, the integral
in Eq. (5) is evaluated in a straightforward manner and, after
some algebra, gives the following Bessel-series expression for
hEzi:
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wherean and�n are values at�n, and
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Here, the fact thatAnLb � 1 has been used to discard exponen-
tially small contributions from the farther of the two beam ends.
This expression is found to be in excellent agreement with the
exact expression Eq. (5) for every case examined.

Eq. (9) is an important result of this paper, but the summation
in general requires laborious numerical evaluation. In the fol-
lowing section, however, it is shown that the expression may be
approximately evaluated for beams with sufficiently large radii
at the beam ends.

III. SPECIAL CASES
A. Beam Profiles

The radiusa of the axisymmetric beam and the line-charge
density� in Eq. (9) are in general independent quantities re-
lated by the beam transverse emittance and theaccelerator lat-
tice. In this work,� is taken to be any non-negative function

that vanishes smoothly at the beam ends. For the equilibrium
axisymmetric beams considered here,a, �, and the normalized
edge emittance�N are related approximately by the steady-state
envelope equation
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Here,�0 is the phase advance per lattice period2L in the ab-
sence of space-charge effects, and
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is the beam perveance, with� being the beam axial velocity
scaled byc. Four cases are studied here:

(1) Uniform radius. Here,�N is obtained directly from Eq. (10)
and increases toward the beam ends to balance the decreasing
transverse space-charge force.

(2) Uniform normalized emittance. For this case, Eq. (10) is
solved trivially fora2, giving
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(3) Uniform “transverse temperature”. Even though the enve-
lope equation Eq. (10) is derived under the assumption that the
beam is cold in the transverse plane, the transverse tempera-
ture of a bean is in general proportional toT � �2N=a

2. If this
temperature-like quantity is treated as uniform along a beam,
Eq. (10) gives
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(4) Uniform charge density. If the charge density� is assumed
uniform along the beam, then

a2 =
�

��
; (14)

and the normalized emittance�N from q. (10) vanishes at the
beam ends along with� anda.

Although these simple profiles are unlikely to match that in an
experimental beam, they illustrate the sensitivity of the space-
charge field to the beam radial variation. Fig. 1 shows field
values calculated for beams with identical parameters and line-
charge profiles, but differing radial profiles. The parameters are
those of a small recirculating inductionaccelerator being built
at the Lawrence Livermore National Laboratory [4], except that
the midsection of the beam has been shortened to highlight field
changes near the ends. As expected, one finds that the peak
space-charge field increases for profiles that have smaller end
radii. It is also evident thathEzi for the uniform-density is
qualitatively different from the others. For the cases with a fi-
nite beam-end radius, the field magnitude is seen to drop sig-
nificantly in a narrow region at the beam end. In this region,
which has a characteristic length ofR=�1, the absence of charge
outside the beam reduces the axial field, and at the endpoints,
the field is reduced by approximately half. In contrast,hEzi



Figure 1. Radially averaged space-charge field for beams with
various radial profiles but the same line- charge density.

for the uniform-density case varies monotonically near the end
due to the rapidly decreasing radius. Another distinction of the
uniform-density case is that about 250 terms are required for
convergence of the Bessel series in Eq. (8), whereas the other
cases require between 20 and 40 terms. This difference arises
because the beam radial profile ispoorly fit by a Bessel series
whena=R is small, and many terms are needed for an adequate
representation.

B. Analytic Approximations

Since the series Eq. (8) converges rapidly whena=R �
> 0:05

for all z, it is sensible to approximate thehEzi expression by
settingn = 1 in fn and in the exponential factor. Also, sincea
varies only slightly between the ends and�1 for such beams,
leading Bessel factor and the derivatives ofa and � can all
be evaluated at�1 with negligible error. These approxima-
tions leave two Bessel series that, remarkably, can be exactly
summed. Expressed generally, these Bessel sums have been ver-
ified numerically over the range1 � x > 0:
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Outside the specified range, these sums either fail to converge
or give other values. Substituting Eq. (15) into the approximate
form of Eq. (8) leads to the expression
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This expression is a numerically tractable generalization of
Eq. (2) and is a very good approximation to the Bessel-series
expression Eq. (8) for most experimental beams. As expected, it
gives an inaccurate butnon-singular result for uniform-density
beams.

Sufficiently far from the beam ends, the exponentials in
Eq. (8) vanish, and�n = �. In this case, the Bessel sums in

Figure 2. Radially averaged space-charge field for a constant
emittance beam calculated using various approximations

Eq. (15) can be used to evaluate Eq. (8) without further approx-
imation, and the result exactly recovers the general g-factor ex-
pression Eq. (2). It follows that Eq. (2) giveshEzi accurately in
the interior of any beam in which� anda vary on length scales
that are long compared withR=�1. The expression only fails
within a region a few timesR=�1 in length at each end.

The various approximate expressions forhEzi are compared
in Fig. 2 for a beam with a uniform normalized emittance and
the same lattice and beam parameters as the beams shown in Fig.
1. The Bessel-series approximation has been compared with
the exact integral expression Eq. (5) at selected points along the
beam and is found to agree within 1% everywhere. The new
analytic expression Eq. (16) deviates from the Bessel-series re-
sult by a few percent near the peak magnitude ofhEzi, but it
nonetheless reproduces the main features of the more exact ex-
pression. Both curves overlay the general g-factor model away
from the ends, as expected. The curve generated from the simple
g-factor expression Eq. (1) deviates from the other approxima-
tions in the beam interior, underlining the fact that variation of
the beam radius cannot in general be ignored.
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