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    Abstract

   New approach to keep emittance of a high current beam in a
uniform focusing channel is presented. The matching
conditions for a beam with arbitrary distribution function in a
nonlinear focusing channel are examined. To obtain proper
matching, it is necessary to accept that the potential of the
external focusing field contains higher order terms than
quadratic. The solution for external potential is obtained from
the stationary Vlasov's equation for beam distribution function
and Poisson's equation for electrostatic beam potential. An
analytical approach is illustrated by results of a particle-in-cell
simulation.

                         I.  INTRODUCTION

     The  nonlinear  space  charge  field  of  a  beam  is a serious
 concern for beam emittance growth in the low energy part of
an accelerating facility. This effect is most pronounced in the
injection region where particles are slow and space charge
forces are significant. The problem of beam emittance growth
due to nonstationary beam profile in a focusing channel with a
linear focusing field was treated in many papers (see ref. [1-9]
and cited references there). The general property of space
charge dominated beam behavior is that a beam with an initial
nonlinear profile tends to be more uniform and this process is
associated with strong emittance growth and the appearance of
beam halo.
     The  beam  emittance  is  conserved  if the beam is matched
 with the channel. The problem of matching of the nonlinear
density profiled beam with linear uniform focusing channel
was studied in detail in ref. [9-12]. The analytical approach is
based on the fact that the Hamiltonian of the matched beam is
a constant of motion, and therefore the unknown distribution
function can be expressed as a function of the Hamiltonian. A
general property of the solution to problem is that with
increasing beam current, the profile of the matched beam has
to be more and more flat while the phase space projection
(beam emittance) has to be more  and more close to a
rectangle.
      Laboratory beams  are  usually far from the above solution
and suffer serious emittance growth. The purpose of this paper
is to check whether it is possible to match the beam with a
given distribution function with the uniform focusing channel.
As is shown below, it is possible if we assume that the
focusing field includes higher order terms than quadratic [13].

   II. MATCHED CONDITIONS FOR THE BEAM
      WITH  GIVEN DISTRIBUTION FUNCTION

      The procedure to find the matching conditions for a beam
with  an  arbitrary  distribution  function was discussed in ref.
[13]. Let us assume that the beam is matched with the channel.

Hence, the Hamiltonian is a constant of motion but no
assumptions about linearity of focusing forces are adopted:
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The total potential of the structure is a combination of the
external focusing potential, Uext, and the space charge
potential Ub  of the beam, U = Uext + Ub. The time-
independent distribution function of a matched beam obeys
Vlasov's  equation:
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where the partial derivative of the distribution function over
time is omitted due to initial matched conditions. The
distribution function of the beam is supposed to be given from
the source of particles of the beam. Therefore, the self
potential of the beam Ub is also a known function derived
from Poisson's equation:
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where ρ(r) is the space charge density of the beam. Combining
solutions of Vlasov's equation for total potential of the
structure, U, and space charge potential of the beam, Ub ,
obtained from Poisson's equation, the external potential of the
focusing structure can be found:

 Uext = U -  Ub..                                                                     (4)

The solution of this problem is unique for every specific
particle distribution.

  III. EXAMPLE OF THE MATCHED BEAM
WITH NONLINEAR SPACE CHARGE FORCES

   Let us consider a z-uniform beam with a "parabolic"
distribution function in four -dimensional phase space:
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This distribution makes an elliptical phase space projection at
every phase plane and produces a decrease function of space
charge density from axis which is close to experimentally



observed beam. The normalized root-mean-square (RMS)
beam emittance is:
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Substituting the distribution function (5) into Vlasov's
equation yields  an expression for the total unknown potential
of the structure:
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Vlasov's equation can be separated into two independent parts
for x- and y- coordinates respectively:
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Combining solutions of eq. (8), the total potential of the
structure is a quadratic function of coordinates which creates
linear focusing:
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The appearance of quadratic terms in the total potential of the
structure is quite clear because phase space projections of the
beam have elliptical shape and an ellipse is conserved in a
linear field. The space charge field of the beam Eb  is
calculated from Poisson's equation using a known space
charge density function of the beam ρb:
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where I is the beam current and β is the longitudinal velocity
of particles. Subtraction of the space charge field from the
total field of the structure gives the expression for the external
focusing field of the structure which is required for
conservation of beam emittance:
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where Ic =  4πεοmc3/q  = A/Z 3.13.107 amp is a characteristic
value of the beam current. The relevant potential of the
focusing field is given by the expression:
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Let us note that the external potential of the structure consists
of two parts: quadratic (which produces linear focusing ) and
higher order terms which describe nonlinear focusing. The

linear part depends on the values of beam emittance and beam
current while the nonlinear part depends on beam current only.
This means that the external field has to compensate the
nonlinearity of self-field of the beam and produce required
linear focusing of the beam to keep the elliptical beam phase
space distribution. Fig. 1 illustrates the relationships between
space charge field of the beam, total field, and focusing field
of the structure. The external focusing field obtained from the
above consideration is a complicated function of radius which
is linear near the axis and becomes nonlinear far from the axis.
One of the ideal ways to create the required focusing potential
is to introduce inside the transport channel an opposite
charged cloud of heavy particles with the space charge
density:
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In fig. 2 the charged particle density of the transport beam and
the external focusing beam are presented.

          

Fig.1.  Space charge field of the beam, external focusing field,
and total field of the structure.

           

Fig. 2.  Charged particle density of the transport beam and the
external focusing beam.



Fig. 3. Halo formation of the beam in focusing channel with
linear focusing forces (left column) and perfect matching of
the same beam with nonlinear focusing channel(right column).

At fig. 3 the results of particle-in-cell simulation of the beam
in linear and nonlinear focusing channel using code
BEAMPATH [14] are presented. A beam of particles was
represented as a collection of 10000 trajectories. Space charge
field of the beam was calculated from Poisson's equation on
the uniform rectangular meshes of dimension NX x NY = 256
x 256. The external focusing potential for the linear focusing
channel was chosen as
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which corresponds to the matched conditions for an equivalent
KV beam with the same RMS beam emittance, ε, and RMS
beam size, R.  In the case of nonlinear focusing, the external
potential is represented by eq. (13).  Let us note that quadratic
terms  in potentials (13) and (15) are different.
     From  results  of simulations, it is seen that in both cases
the sizes of the beam in real space (beam envelopes) are close
to constant which is typical for matching of the beam, taking
into account RMS beam sizes. But  in the case of linear
focusing, the beam is mismatched in the phase plane which
results in 25% emittance growth accompanied by halo
formation. At the same time, the beam is completely matched
with the nonlinear focusing channel, and this results in

conservation of all  beam characteristics and does not suffer
any serious emittance growth.

                    IV. CONCLUSIONS

        Conservation  of  beam   emittance  was   treated  as  a
 problem of proper matching of the beam with a uniform
focusing channel. Matched conditions for the beam with
elliptical phase space projections but nonlinear space charge
forces in a uniform focusing channel require the focusing field
to include nonlinear terms of higher order than quadratic. The
solution for the external potential is attained from the
stationary Vlasov's equation for beam distribution function
and Poisson's equation for electrostatic beam potential. The
focusing field produces linear focusing near the axis of the
structure but has to change non-linearly away from the axis.
Example of the beam with "parabolic" distributions in 4D
phase space was considered. Results of a particle-in-cell
simulation confirms the conservation of beam emittance in a
nonlinear external field.
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