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     The wakefield generated in the cylindrical cavity of an RF
photoinjector, by the strongly accelerated electron beam, has
been analytically calculated [1] under the assumption that the
perturbation of the field map by the exit hole is negligible as
long as the ratio: exit hole radius/cavity radius is lower than
approximately 1/3. Shown experimentally in the different
context of a long accelerating structure formed by a sequence
of bored pill-box cavities [2], this often quoted result must be
checked for the wakefield map excited in a photoinjector ca-
vity. Further, in the latter case, the empirical rule in question
can be broken more easily because, due to the causality, the
cavity radius to be considered is not the physical radius but
that of the part of the anode wall around the exit hole reached
by the beam electromagnetic influence. We present an analy-
tical treatment of the wakefield driven in a photoinjector by
the accelerated electron beam which takes this hole effect into
account,  whatever the hole radius may be.

I. INTRODUCTION

   Wakefields are usually considered for ultrarelativistic coas-
ting beams. The electromagnetic response of a discontinuous
conducting wall to an exciting charged particle is only expe-
rienced by the particles located downstream, in the wake.
Furthermore, the self-field, or space charge field, is negligible
so that the only forces acting on a beam particle are the
wakefield and a possible focusing force. At the end, the beam
is assumed  to be coming from − ∞ and going to +∞.
    For a photoinjector beam, the situation is very different. It
is strongly accelerated from thermal to transrelativistic velo-
city. If intense, its self-field must be taken into account. In
addition, beam electrons appear at the cathode surface at t=0,
the time when laser illumination begins, so that causality
governs both synchronous and radiation fields. If it is agreed
to call wakefield once again that field experienced by a beam
electron which is generated by other beam electrons in the
presence of the conducting walls, this wakefield includes both
the wall response and the space charge field.
    Thus defined wakefield has been analytically calculated for
a pill box photoinjector model [1]. Radially, this modelling is
relevant because the only parts of the photoinjector RF-cavity
walls that the beam field has time to reach, during beam acce-
leration, are located not far from the axis on both cathode and
anode. On the anode however, the question arises of the exit
hole influence. The latter has been neglected in [1] by putting
forward an empirical rule [2] according to which hole in-
fluence is negligible as long as r0/R <1/3, where r0 and R  are
the hole and cavity radii respectively. Though often quoted,
this rule is based on a single experimental study worked out
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on an ultrarelativistic coasting beam crossing
a set of bored cavities. Its validity for the
low- to transrelativistic- energy beam
accelerated in a photoinjector is questionable.
   The aim of the present work is to investi-
gate theoretically the aperture effects on the
above defined wakefield.

Fig. 1. Schematic of an RF- photoinjector cavity

II.  EXPANSION OF  THE ZONE OF BEAM
ELECTROMAGNETIC  INFLUENCE: THE

THREE  PHASES   

    Before trying to calculate the map (E,B)(x,t) of the beam-
generated, time-dependent electromagnetic field, in the pre-
sence of the cavity conducting walls, one has to know what
parts of these cavity walls are able to play a role in the field
map building. Owing to causality, three phases have to be dis-
tinguished. In the first: t<g/c (where t=0 corresponds to the
beginning of photoemission) the beam-generated elec-
tromagnetic field has not yet reached the exit wall (anode). In
the second: g/c <t<tg, the beam-generated electromagnetic
field has reached the exit wall, but the beam head is still above
the exit aperture. In the third: tg <t <tqg   the beam penetrates
the exit hole. For E0=30 MV/m, τ =30 ps, g=6 cm, these three
phases correspond to: t<200 ps, 200<t<250 ps, and
250<t<280ps  respectively.

III. FIRST PHASE

 The situation is schematized in Fig. 2. The (E,B)(x,t) field
map is that already calculated in this phase for the closed
cavity [1].
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Fig.2. First phase:t<g/c,
where t=0 corresponds to
the beginning of photoe-
mission (t<200 ps for the
above parameters)



IV. SECOND PHASE
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 Fig.3. Second phase: g/c<t<tqg

  The   question   is   of
solving  Maxwell's
equations  in  the
unbounded domain of
Fig. 3.
    There is no rigourous
analytical solution which
would take into account
the boundary conditions
of the first step, as well
as:

  

Φ(r0 ≤ r ≤ R ,z = g, t)

= 0,
                                 Ar (r0 ≤ r ≤ R ,z = g, t) = 0,

and:                          
  

∂Az

∂z
(r0 ≤ r ≤ R ,z = g, t) = 0.

    But a good approximation is obtained by assigning these
 conditions to the general solution in the domain of Fig. 4.
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Fig. 4.

This general solution is the sum of a syn-
chronous field and of a radiation field.

 A. Synchronous field

   This is the particular solution of

Maxwell's equations which corresponds to
the beam right-hand sides  ρ(x, t)
and j(x, t) (charge and current densities),
i.e. in terms of the scalar- and vector-po-

tentials Φ  and A, and in  Lorentz jauge:
     Φ = ρ ε0 ,  A = µ0 j .

     For an axisymmetric radially uniform beam, transformation
and Green's function techniques lead to:
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where a  is the beam radius, I  the current, Λ=mc2/eE0 ,  and
E0  the  accelerating RF field (E z =−E0 ), supposed to be
constant during the beam photoemission 0≤t≤τ , as it is in the
144 MHz cavity of the ELSA photoinjector [3].

B. Radiation field

   This is a general solution of homogeneous Maxwell's equa-
tions. Taking the boundary conditions into account, this gene-
ral solution can be written under the form:
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dh,

with a similar expression for Az rad , sin(hz) being replaced by
cos(hz), AΦn(h) andBΦn(h) by AAn(h) andBAn(h) . These 4
latter functions of h  are, for the time being, arbitrary dimen-
sionless integrable functions, only related by the Lorentz jauge
condition which gives:

  AAn = (1 / hR )BΦn, BAn = −(1 / hR )AΦn.

C.  Calculation of AΦn(h) and BΦn(h)

    At first, these integrable functions (∫|AΦn(h)| dh< ∞|) are
expanded in Laurent series, taking into account their odd pa-
rity ( AΦn(h) andBΦn(h) are sin-Fourier coefficients) :

  
AΦn(h) = (1 / hR ) AΦnm (hR )−2m

m=0

∞
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    To calculate AΦnm andBΦnm, the above boundary condition
Φ(r0≤r≤R.,z=g,t) is written for Φtot = Φsyn + Φrad , and inte-

grated on r  in its validity domain: r0 ≤r≤R.  One is led to an
infinite system of linear algebraic equations:
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where ζ ,α nm,βnm are known functions of t, AΦnm, BΦnm  are

the sought after unknowns. A good approximate solution is

found by truncating the system to a finite size: n≤N,m≤M, with

N~100 and M ≤10. The 2N(M+1) unknowns  are then calcula-

ted by numerically solving the system of 2N(M+1)  equations:

α nm(ti )AΦnm
m=0

M

∑
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N

∑ + βnm(ti )BΦnm = ζ (ti ), i ∈ [1,2N(M +1)],

ti ∈ [g c, tg ] .

AΦnm andBΦnm  being calculated, Φ(r ,z, t) andAz( r ,z, t) are



deduced, from which the fields result.

V. THIRD PHASE
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Fig.5. Third phase: tg <t <tqg

The beam now penetrates the
exit hole.The electromagnetic
field is obtained by adding, in
the cavity and in the drift
tube respectively, the syn-
chronous field and a radiation
field with undetermined coef-
ficients.
   These coefficients are de-
termined, according to the
above method, by writing the
boundary conditions: a) on
the photoinjector anode

  (z = g, r0 ≤ r ≤ R ) for the
coefficients relative to the field inside the photoinjector, b) on
the aperture (z = g, 0 ≤ r ≤ r0 )  for the radiation field coeffi-
cients inside the drift tube.

A. Wakefield inside the cavity

a) Synchronous field

   The techniques used are the same as in phase 2. Again, in
Lorentz jauge, one finds for the scalar potential:
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and for the vector potential:
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b) Radiation  field

   This has the same form as in phase 1.

B. Wakefield inside the drift tube
a) Synchronous field

   For the scalar potential, the following is found:
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and a similar expression is found for Az
b) Radiation  field

   The boundary conditions to be satisfied are now:

•  Φ=0, Az =0 on the tube wall
•  a radiation condition for z→ +∞.

   This leads to adopting for the scalar potential:
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with ω>0 (wave propagating in the positive z direction).

   The unknown functions DnΦ (ω) , expanded in Laurent se-
ries, are calculated by writing the field continuity on the aper-
ture: (z = g, 0 ≤ r ≤ r0 ) . After integration on r, in the interval
0 ≤ r ≤ r0 , one is led to an infinite system of linear algebraic
equations:

Kn,m
n=1,m=1

∞

∑ (t) Dn,m = L(t)

   Here again,  a good convergence is reached by truncating at
nmax = N  and mmax = M ,  with N ~100  and M ≤10.

   Sample field maps are given in a companion paper [4], in
which wakefield effects on beam quality are studied.
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