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Abstract

We derive a set of moment eguations which incorporates linear
quadrupolar focusing and space-charge defocusing, in the pres-
ence of rotationa misalignmentsof the quadrupol esabout thedi-
rection of beam propagation. Althoughtheusual beam emittance
measured relative to fixed transverse x and y coordinate axes
is not constant, a conserved emittance-like quantity has been
found. Implications for alignment tolerances in accelerators for
heavy-ion inertial fusion are discussed.

I. INTRODUCTION

One class of misalignments of interest to accelerator design-
ersisthat class characterized by a rotation of the beam optical
elements about the axis of propagation. Rotated dipoles, for ex-
ample, areknownto cause the centroid of aparticlebeam towan-
der off axis, (since the rotations will result in momentum im-
pulsesin the positive and negative y [vertical] direction.) How-
ever rotated quadrupoleswill not cause aninitially aligned beam
centroid to become misaligned. Quadrupole rotations do how-
ever, create alinear coupling between the two transverse direc-
tions, « (horizonta) and y, in the equations of motion. Since
this coupling enters linearly in the equations of motion, individ-
ual particle oscillation frequencies can be shifted, and this has
implications for resonance avoidance in synchrotrons, (see ref.
[1] and references therein). In this paper, we are interested in
the effects on the emittance of beams with non-negligiblespace
charge, such as those proposed for heavy ioninertia fusion.

We derive a set of moment equations which incorporatesthis
coupling, and which serves as a generaization to the conven-
tional envelope equations. We show that even when the equa
tions of motion are linear in x and y, the beam emittance mea-
sured relative to fixed x and y coordinate axes is not constant,
although a conserved emittance-like quantity can be defined. 1f
not corrected, a beam will acquire a finite angular momentum
and rotation angle, before passing through afina focusing lens,
thereby limiting the achievable final spot size. The results pre-
sented here will be of usein determining aignment tolerancesin
heavy ion accelerators.

1. EQUATIONS OF MOTION

To obtain an estimate, we assume that the force on an ion
comes from two sources only: The external focusing from a
purely quadrupolar field, and the space charge of the beam (im-
age forces have been neglected). For the purposes of this calcu-
| ation we assume that the space chargeisdistributedin auniform
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density elipse, but we alow the semi-axes and the rotation an-
gle of the ellipse to evolve as a function of the axial coordinate
z. We assume that a quadrupole is rotated by an angle ¢ from
the z-axis, and that the beam is rotated by an angle « from the
z-axis. The relation between the coordinates in the quadrupole
frame (indicated by subscript 0) and the lab frame (no subscript)
are given by:

(1)

Similarly, the relation between the coordinates in the rotated
beam frame (in which the beam semi-axes are paralld to the co-
ordinate axes and are indicated by subscript b) and thelab frame
are given by:

x =xpgcosf —yosind; y=1ygcost + xgsinf

y—{(y) = ypcosa+ xpsina

(2)
Here () indicates astatistical average over the distributionfunc-
tion. For anon-relativistic beam moving at constant velocity e
along the z axis, the paraxial equations of motion can then be
written as;

z—{x) = xpcos a — ypsin o;

v = Koot + Kyt + Kawo( = (2)) 4 Kooy (4= () (3)

V'= Koyyy+ Koyot + Koy (y = () + Koya (x — (2)) (4)

Here primes (') indicate derivatives with respect to z and10
Kype = Kypocos® 0+ Kyyosin® @ = K0 cos 20

Kooy = (Kgwo — Kgyo)(sin 0 cos ) = Kgposin 20

Koo = (Kgwo — Kgyo)(sind cos §) = Kguy

Ky = Kgyo cos? 0 + Ko sin? 0 = — K 0 cos 20

Kopy = Kyppcos®a + Koyp sin? o

Koy = (Ksop — Koyp) (sin acos o)
Koye = (Kb — Koyp)(sin avcos @) = Ky
Koyy = Koyp cos? o + Kyppsin® o
and where
B’ B’
K 0 = +—— or - K 0= —K 20 (5)
! [B] Be[Bpl o !

Koot = K/[2(A2f + (AzgAyp)'/?)];
Koyy = K/[2(Ay; + (AxjAy;) /)] (6)
and Az? and Ay? are the momentsin the rotated beam frame:

(7)

Aajg = Azx’cos®a + Ay2 sin o + 2Axycos asin a

Ay? = Ay? cos? a + Ax? sin®

(8)

a — 2Axycos o sin o



Here, K = 2qI/(32Al,) isthe perveance, ¢ is the charge
stateof theions, A istheatomic mass of theions, 3 isthevelocity
of theionsinunitsof ¢, /, = 4weym, 3 /e isthe proton charac-
teristic current (=31 MA), I istheion beam current, B’ and £’
are quadrupole magnetic or eectric field gradients respectively,
[Bp] = Am, Be/qe istheion rigidity, m,, iSthe proton mass, e
isthe proton charge, ¢, isthefree space permittivity and the op-
erator A isdefined (asinref. [2]) by Aab = (ab) — (a){(b) (0.
Az? = (%) — (x)?), where () indicates average over particles.

Note that the space-charge force, is just the force obtained
from the potentia of a uniform density elipse (ref. [3]), but
where the semi-axes a and b have been replaced by 2(Az?)!/?
and 2(Ay?)'/?, respectively, and where the location of the cen-
troid determines the zero point of the space-charge force.

The beam rotation angle o may be expressed in terms of sec-
ond order moments. From eq. (2), Az? — Ay? = (Ax} —
Ay?) cos 2a and Axy = (1/2)(Ax? — Ay?) sin 2a, so that

2Axy
Ar? — Ay?

tan 2a =

(9)
In deriving eg. 9 we have used thefact that Azy, = 0.

1. MOMENT EQUATIONS

Let thedistributionfunction f, be the number of particlesd N
per unit transverse phase space volume,

dN
/ ! _
fle, 2y, 9, 2) = Tededydy
The evolution of f is described by the Vlasov/Collisonless
Boltzmann Equation:
af  ,of

1
v x+x 8x’+y3y+y

af
"— =0 10
ay/ ) ( )
wherez’” and y"’ are determined by the equations of motion (egs.
[3] and [4]).

The average of avariable¢ over the continuousdistributionis
given by:

(€)(2) = %////5]”(%1",3/, Y, z)deda'dydy’.

Usingintegrationby parts, itisstraightforwardto cal culate the
evolution of the following second order moments:

2
dﬁ: = 2Azz’

%ﬁxl = Az + Kpp Az? + KpyAzy

A _ 9K, Axa' 4+ 2K, Az'y
day?

T = 2Ayy
d—AdlfL = AY? + KyyAy? + Kyp Ay
dAay'?

T = 2K, Ayy + 2K, Axy
350 — Ay + Any
daz'y
dz
%ﬁyl = Az'y + KyyAvy + Kyy Az?
dasz'y’ _
dz -

= A2y + KpoAzy + Koy Ay?

Koz Azy + Koy Ayy' +

Ky Az'y + Ky Aza! (12)
Similarly the evolution of thefirst-order momentsis given by:

e — ()

W = (y)

dgz) = qu<x> + quy<y>

UL = Koy () + Koy () 12)
Ineg. 11,

Kyy = Koyy + Kyy

Koy = Kgoy + Ksay

Kyoe = Kgyo + Koyo = Kuy.

Notethat thefour equationsfor thefirst order moments depend
only on first order moments, and the ten equationsfor the second
order moments depend only on second order moments, so that
each set of equationsformsaclosed set. The centroid motionis
thusdecoupl ed from the envel ope motion cal culated with respect
to the centroid.

The rms emittances defined along the = and y lab frame axes
are defined by:

€, =4 (Al‘zAl‘/z — (Axx’)z)l/z

ey =4 (Aysz’z — (Ayy’)z)

Using egs. (11) we can calculate the derivatives of ¢ and ¢
(again assuming constant 3):

1/2

d 2

_d6zx = 32ny(Ax2Ax/y — AzyAzz')

dfz . 2 ; ;

5 = 32Ky (Ay*Ary — AzyAyy') (13)

Since the rotated quadrupoles induce finite correlations be-
tween x and y the rms emittances are not conserved.

Wemay aso defineaquantity! = Arxy’ — Axz’y, whichispro-
portional to the z component of the angular momentum. Again
using egs. (11) and some manipulations involving the defini-
tions, and egs. (4), (5) and (9), we find,

dl
dz
Ascan beseen fromeg. 14, theangular momentum isnot nec-
essarily conserved when the quadrupolesarerotated. Physically,
after a beam has passed through a quadrupol e the beam will in
genera be dliptical. On passing through a quadrupole rotated
relative to thefirst, the principal axis of the dliptical beam will
not align with the quadrupol e axes and a torque will be applied
to the beam, causing a rotation of the beam. (Note aso that eg.
14, does not depend on the self space-charge forces of the beam,
as expected).

Because the focusing strength isafunction of z, the effective
externa potentia well withinwhich thebeam travelsisz depen-
dent, and so the transverse beam energy H isalso not a constant
in z. However, in the hard-edge model, within each quadrupole
and drift section the focusing strength is assumed constant, and
therefore the transverse energy is constant. We may use the re-
sult of ref. [2], adding the kinetic and potential energy terms to

= (Kgyy — Kgoo)Azy + Kooy (Az® — Ay?)  (14)



obtain atotal transverse energy. To obtain the potential energy
of the beam in the external quadrupolefield, we transform A z2
and Ay2 tothelab frame. Theresultis
20 = Azx'? + Ay'?—

Kq00 ((AJ;Z — Ay?)cos 20 + 2Azxysin 29) -

Kln ((Az2)1/2 + (Ay2)H/?) (15)
Here Az? and Ay? may be expressed inlaboratory quantitiesus-
ing egs. (7) and (8).

V. “EMITTANCE-LIKE” CONSTANT OF THE
MOTION
Although the emittance is not a constant with respect to z, a

quantity which is related to the emittance is conserved. We de-
fine a generalized emittance ¢, by:

1
565 + 16(AzyAz'y — Ary Az'y)

1

. . . de?
Itisreadily shown using egs. 11 and 13 that 2 = 0.

V. EXAMPLES OF RESULTS

A code was written to integrate egs. (11). The results for ¢,
and ¢, areplottedinfigurelfor asingly charged potassium beam
(A = 39) with a current of 2 mA, an energy of 80 kV, initia
emittances e, = ¢, = 2.5 x 107° mrad, Kz, = 30.9 m2,
and with (¢) = 0.0234 and A§? =0.0156. The occupancy of
the quadrupoleswas 0.33 and the half-lattice period was 0.36 m.
The integration length was 40 half-Iattice periods.
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Figurel. ¢, (oscillating) and ¢, (nearly constant) vs z for both
integration of eq. 11, and particle-in-cell results.

Also shown in Figure 1 isa 2D particle-in-cell (PIC) simula
tion with the same parameters, for an initia distribution that is
KV (ref.[3]), propagating through a pipewith circular cross sec-
tion and 6 cm radius. The near identical overlap of the curves
suggests that if the initial distributionis KV the assumption that
the space charge field remains linear is at least a good approx-
imation and possibly an exact result. The small increase in ¢,
for large = isprobably dueto the non-linear image forces arising
because of thefinite piperadiusin the PIC simulations.

When these results are applied to the small recirculator of ref.
[4], we find that with 2 mrad rms errors, there occurs only a 2%

increase in emittance for a beam which drifts(rather than accel -
erates) thenominal 15 laps. When therotation errorsare random
over all 15 laps the emittance increases by about 50%. An ac-
celerated beam will presumably show behavior somewhere in-
between. A generdization of the theory presented here to in-
clude acceleration isin progress.

V1. DISCUSSION AND CONCLUSION

Ininertia fusion applications, the ultimate goal isto focusthe
beam ontoasmall, 2-3 mm spot at thetarget. Thefinal emittance
isoneof theimportant parameters needed to cal cul ate theachi ev-
ablefina spot size (see e.g. ref.[5]). When quadrupolerotation
errors are present, the beam will in genera have afiniterotation
angle and rotation rate, and will focus down to a more eliptical
shape than in the absence of errors, reducing the power level that
falswithinagiven spotradius. Analogoustothecase of centroid
displacements, it isconceivablethat asystem of intentionally ro-
tated quadrupoles could compensate for the accumulated errors
if theten momentsin eg. 11 are known.

In summary, we have used aformulation, in which the mgor
assumption is that the space charge force can be calculated by
assuming that the beam remains a uniform density elipse with
a shape that evolvesin z. Under this assumption we have a de-
rived a set of moment equations which generalizes the conven-
tional envelope equations. We have found the misalignments
cause the beam to acquire an overall angular momentum, and an
increase in emittance measured relativeto fixed laboratory axes.
A generdized emittance has been constructed which is a con-
served quantity (when the forces remain linear). Particle-in-cell
results have shown agreement with the moment equations, and
have suggested that the formulation may be exact if the initial
distributionisKV. We have applied this method to estimate rota-
tion alignment tolerancesin the small recirculator of ref [4], and
have suggested that thisformulation will be useful when setting
alignment tolerances and/or correction methodsin an inertial fu-
sion driver.
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