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Abstract

We derive a set of moment equations which incorporates linear
quadrupolar focusing and space-charge defocusing, in the pres-
ence of rotational misalignments of the quadrupoles about the di-
rection of beam propagation. Although the usual beam emittance
measured relative to fixed transverse x and y coordinate axes
is not constant, a conserved emittance-like quantity has been
found. Implications for alignment tolerances in accelerators for
heavy-ion inertial fusion are discussed.

I. INTRODUCTION

One class of misalignments of interest to accelerator design-
ers is that class characterized by a rotation of the beam optical
elements about the axis of propagation. Rotated dipoles, for ex-
ample, are known to cause the centroid of a particle beam to wan-
der off axis, (since the rotations will result in momentum im-
pulses in the positive and negative y [vertical] direction.) How-
ever rotated quadrupoles will not cause an initially aligned beam
centroid to become misaligned. Quadrupole rotations do how-
ever, create a linear coupling between the two transverse direc-
tions, x (horizontal) and y, in the equations of motion. Since
this coupling enters linearly in the equations of motion, individ-
ual particle oscillation frequencies can be shifted, and this has
implications for resonance avoidance in synchrotrons, (see ref.
[1] and references therein). In this paper, we are interested in
the effects on the emittance of beams with non-negligible space
charge, such as those proposed for heavy ion inertial fusion.

We derive a set of moment equations which incorporates this
coupling, and which serves as a generalization to the conven-
tional envelope equations. We show that even when the equa-
tions of motion are linear in x and y, the beam emittance mea-
sured relative to fixed x and y coordinate axes is not constant,
although a conserved emittance-like quantity can be defined. If
not corrected, a beam will acquire a finite angular momentum
and rotation angle, before passing through a final focusing lens,
thereby limiting the achievable final spot size. The results pre-
sented here will be of use in determining alignment tolerances in
heavy ion accelerators.

II. EQUATIONS OF MOTION

To obtain an estimate, we assume that the force on an ion
comes from two sources only: The external focusing from a
purely quadrupolar field, and the space charge of the beam (im-
age forces have been neglected). For the purposes of this calcu-
lation we assume that the space charge is distributed in a uniform
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density ellipse, but we allow the semi-axes and the rotation an-
gle of the ellipse to evolve as a function of the axial coordinate
z. We assume that a quadrupole is rotated by an angle � from
the x-axis, and that the beam is rotated by an angle � from the
x-axis. The relation between the coordinates in the quadrupole
frame (indicated by subscript 0) and the lab frame (no subscript)
are given by:

x = x0 cos � � y0 sin �; y = y0 cos � + x0 sin � (1)

Similarly, the relation between the coordinates in the rotated
beam frame (in which the beam semi-axes are parallel to the co-
ordinate axes and are indicated by subscript b) and the lab frame
are given by:

x� hxi = xb cos�� yb sin�; y � hyi = yb cos�+ xb sin�
(2)

Here h i indicates a statistical average over the distribution func-
tion. For a non-relativistic beam moving at constant velocity �c
along the z axis, the paraxial equations of motion can then be
written as:

x00 = Kqxxx+Kqxyy+Ksxx(x� hxi)+Ksxy(y�hyi) (3)

y00 = Kqyyy+Kqyxx+Ksyy(y � hyi) +Ksyx(x� hxi) (4)

Here primes (0) indicate derivatives with respect to z and10
Kqxx � Kqx0 cos

2 � +Kqy0 sin
2 � = Kqx0 cos 2�

Kqxy � (Kqx0 �Kqy0)(sin � cos �) = Kqx0 sin 2�

Kqyx � (Kqx0 �Kqy0)(sin � cos �) = Kqxy

Kqyy � Kqy0 cos
2 � +Kqx0 sin

2 � = �Kqx0 cos 2�

Ksxx � Ksxb cos
2 �+Ksyb sin

2�

Ksxy � (Ksxb �Ksyb)(sin� cos�)
Ksyx � (Ksxb �Ksyb)(sin� cos�) = Ksxy

Ksyy � Ksyb cos
2�+Ksxb sin

2�

and where

Kqx0 � �
B0

[B�]
or

E0

�c[B�]
; Kqy0 � �Kqx0 (5)

Ksxb � K=[2(�x2b + (�x2b�y2b )
1=2)];

Ksyb � K=[2(�y2b + (�x2b�y2b )
1=2)] (6)

and �x2b and �y2b are the moments in the rotated beam frame:

�x2b = �x2 cos2�+ �y2 sin2�+ 2�xy cos� sin� (7)

�y2b = �y2 cos2 �+�x2 sin2�� 2�xy cos� sin� (8)



Here, K � 2qI=(�3AIo) is the perveance, q is the charge
state of the ions,A is the atomic mass of the ions, � is the velocity
of the ions in units of c, Io � 4��0mpc

3=e is the proton charac-
teristic current (�=31 MA), I is the ion beam current, B0 and E0

are quadrupole magnetic or electric field gradients respectively,
[B�] � Amp�c=qe is the ion rigidity, mp is the proton mass, e
is the proton charge, �0 is the free space permittivity and the op-
erator � is defined (as in ref. [2]) by �ab = habi � haihbi (e.g.
�x2 � hx2i � hxi2), where h i indicates average over particles.

Note that the space-charge force, is just the force obtained
from the potential of a uniform density ellipse (ref. [3]), but
where the semi-axes a and b have been replaced by 2(�x2b)

1=2

and 2(�y2b )
1=2, respectively, and where the location of the cen-

troid determines the zero point of the space-charge force.
The beam rotation angle � may be expressed in terms of sec-

ond order moments. From eq. (2), �x2 � �y2 = (�x2b �
�y2b ) cos 2� and �xy = (1=2)(�x2b ��y2b ) sin 2�, so that

tan 2� =
2�xy

�x2 ��y2
(9)

In deriving eq. 9 we have used the fact that �xyb = 0.

III. MOMENT EQUATIONS
Let the distribution function f , be the number of particles dN

per unit transverse phase space volume,

f(x; x0; y; y0; z) =
dN

dxdx0dydy0

The evolution of f is described by the Vlasov/Collisonless
Boltzmann Equation:
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@y0
= 0; (10)

where x00 and y00 are determined by the equations of motion (eqs.
[3] and [4] ).

The average of a variable � over the continuous distribution is
given by:

h�i(z) �
1

N

Z Z Z Z
�f(x; x0; y; y0; z)dxdx0dydy0 :

Using integrationby parts, it is straightforward to calculate the
evolution of the following second order moments:

d�x2

dz
= 2�xx0

d�xx0

dz
= �x02 +Kxx�x2 +Kxy�xy

d�x02

dz
= 2Kxx�xx0 + 2Kxy�x0y

d�y2

dz
= 2�yy0

d�yy0

dz
= �y02 +Kyy�y2 +Kyx�xy

d�y02

dz
= 2Kyy�yy0 + 2Kyx�xy0

d�xy
dz

= �x0y + �xy0

d�x0y
dz

= �x0y0 +Kxx�xy +Kxy�y2

d�xy0

dz
= �x0y0 +Kyy�xy +Kyx�x2

d�x0y0

dz
= Kxx�xy0 +Kxy�yy0+

Kyy�x0y +Kyx�xx0 (11)
Similarly the evolution of the first-order moments is given by:

dhxi

dz
= hx0i

dhyi

dz
= hy0i

dhx0
i

dz
= Kqxxhxi +Kqxyhyi

dhy0
i

dz
= Kqyyhyi +Kqyxhxi 12)

In eq. 11,
Kxx � Kqxx +Ksxx

Kyy � Kqyy +Ksyy

Kxy � Kqxy +Ksxy

Kyx � Kqyx +Ksyx = Kxy:

Note that the four equations for the first order moments depend
only on first order moments, and the ten equations for the second
order moments depend only on second order moments, so that
each set of equations forms a closed set. The centroid motion is
thus decoupled from the envelope motion calculated with respect
to the centroid.

The rms emittances defined along the x and y lab frame axes
are defined by:

�x � 4
�
�x2�x02 � (�xx0)2

�1=2
�y � 4

�
�y2�y02 � (�yy0)2

�1=2
Using eqs. (11) we can calculate the derivatives of �2x and �2y

(again assuming constant �):

d�2x
dz

= 32Kxy(�x2�x0y ��xy�xx0)

d�2y

dz
= 32Kyx(�y2�xy0 ��xy�yy0) (13)

Since the rotated quadrupoles induce finite correlations be-
tween x and y the rms emittances are not conserved.

We may also define a quantity l � �xy0��x0y, which is pro-
portional to the z component of the angular momentum. Again
using eqs. (11) and some manipulations involving the defini-
tions, and eqs. (4), (5) and (9), we find,

dl

dz
= (Kqyy �Kqxx)�xy +Kqxy(�x2 ��y2) (14)

As can be seen from eq. 14, the angular momentum is not nec-
essarily conserved when the quadrupoles are rotated. Physically,
after a beam has passed through a quadrupole the beam will in
general be elliptical. On passing through a quadrupole rotated
relative to the first, the principal axis of the elliptical beam will
not align with the quadrupole axes and a torque will be applied
to the beam, causing a rotation of the beam. (Note also that eq.
14, does not depend on the self space-charge forces of the beam,
as expected).

Because the focusing strength is a function of z, the effective
external potential well within which the beam travels is z depen-
dent, and so the transverse beam energy H is also not a constant
in z. However, in the hard-edge model, within each quadrupole
and drift section the focusing strength is assumed constant, and
therefore the transverse energy is constant. We may use the re-
sult of ref. [2], adding the kinetic and potential energy terms to



obtain a total transverse energy. To obtain the potential energy
of the beam in the external quadrupole field, we transform �x2

0

and �y20 to the lab frame. The result is

2H = �x02+ �y02�
Kqx0

�
(�x2 ��y2) cos 2� + 2�xy sin 2�

�
�

K ln
�
(�x2b)

1=2 + (�y2b )
1=2

�
(15)

Here�x2b and�y2b may be expressed in laboratory quantities us-
ing eqs. (7) and (8).

IV. “EMITTANCE-LIKE” CONSTANT OF THE
MOTION

Although the emittance is not a constant with respect to z, a
quantity which is related to the emittance is conserved. We de-
fine a generalized emittance �g by:

�2g �
1

2
�2x +

1

2
�2y + 16(�xy�x0y0 ��xy0�x0y) (16)

It is readily shown using eqs. 11 and 13 that
d�2

g

dz
= 0.

V. EXAMPLES OF RESULTS

A code was written to integrate eqs. (11). The results for �x
and �g are plotted in figure 1 for a singly charged potassium beam
(A = 39) with a current of 2 mA, an energy of 80 kV, initial
emittances �x = �y = 2:5 � 10�5 m rad, Kqxo = 30:9 m�2,
and with h�i = 0:0234 and ��2 =0.0156. The occupancy of
the quadrupoles was 0.33 and the half-lattice period was 0.36 m.
The integration length was 40 half-lattice periods.
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Figure 1. �x (oscillating)and �g (nearly constant) vs z for both
integration of eq. 11, and particle-in-cell results.

Also shown in Figure 1 is a 2D particle-in-cell (PIC) simula-
tion with the same parameters, for an initial distribution that is
KV (ref.[3]), propagating through a pipe with circular cross sec-
tion and 6 cm radius. The near identical overlap of the curves
suggests that if the initial distribution is KV the assumption that
the space charge field remains linear is at least a good approx-
imation and possibly an exact result. The small increase in �g
for large z is probably due to the non-linear image forces arising
because of the finite pipe radius in the PIC simulations.

When these results are applied to the small recirculator of ref.
[4], we find that with 2 mrad rms errors, there occurs only a 2%

increase in emittance for a beam which drifts (rather than accel-
erates) the nominal 15 laps. When the rotation errors are random
over all 15 laps the emittance increases by about 50%. An ac-
celerated beam will presumably show behavior somewhere in-
between. A generalization of the theory presented here to in-
clude acceleration is in progress.

VI. DISCUSSION AND CONCLUSION

In inertial fusion applications, the ultimate goal is to focus the
beam onto a small, 2-3 mm spot at the target. The final emittance
is one of the important parameters needed to calculate the achiev-
able final spot size (see e.g. ref.[5]). When quadrupole rotation
errors are present, the beam will in general have a finite rotation
angle and rotation rate, and will focus down to a more elliptical
shape than in the absence of errors, reducing the power level that
falls within a given spot radius. Analogous to the case of centroid
displacements, it is conceivable that a system of intentionally ro-
tated quadrupoles could compensate for the accumulated errors
if the ten moments in eq. 11 are known.

In summary, we have used a formulation, in which the major
assumption is that the space charge force can be calculated by
assuming that the beam remains a uniform density ellipse with
a shape that evolves in z. Under this assumption we have a de-
rived a set of moment equations which generalizes the conven-
tional envelope equations. We have found the misalignments
cause the beam to acquire an overall angular momentum, and an
increase in emittance measured relative to fixed laboratory axes.
A generalized emittance has been constructed which is a con-
served quantity (when the forces remain linear). Particle-in-cell
results have shown agreement with the moment equations, and
have suggested that the formulation may be exact if the initial
distribution is KV. We have applied this method to estimate rota-
tion alignment tolerances in the small recirculator of ref [4], and
have suggested that this formulation will be useful when setting
alignment tolerances and/or correction methods in an inertial fu-
sion driver.
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