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Abstract
The proposed 1-MW spallation neutron source upgrade

calls for a 2-GeV rapidly-cycling synchrotron (RCS) with an
intensity of 1.04x1014 protons per pulse [1]. Due to the high
intensity, the potential exists for collective instabilities.
Emphasis is placed on controlling these by (a) minimizing the
machine impedance by using a contour-following rf shield and
(b) maximizing the momentum spread to make use of Landau
damping. The coupling impedance is estimated and is
dominated by space charge effects. It is found that the
longitudinal microwave stability limit can be exceeded unless
the momentum spread is sufficient. A longitudinal tracking
code was developed to simulate injection and acceleration,
including the effects of space charge and other sources of
impedance [2]. With the aid of the simulation, and under the
assumptions of the instability theory, we arrive at an rf
voltage profile and beam injection parameters which avoid
both the instability and beam loss through the entire cycle.
The limitations of the analysis are explored.

I. INTRODUCTION

Of the several known longitudinal instabilities, only the
single-bunch instabilities need to be considered since the RCS
operates with a harmonic number h=1. The microwave
instability is potentially the most dangerous, and it is analyzed
in detail. This instability should not occur in a machine
operating below transition energy, such as the RCS, if the
coupling impedance is purely capacitive (space charge).
However, it could occur in the RCS when there are resistive
components. The instability growth rate then depends on the
momentum distribution of the beam, particularly the shape of
the distribution tails. A detailed analysis of this instability
requires not only knowledge of the coupling impedance seen
by the beam, but also the peak current and energy spread of the
beam. At this stage, this beam information was obtained
through Monte Carlo simulations [2].

A conservative approach is adopted to prevent the onset of
instability:
• The contributions to the coupling impedance from the

various RCS components are estimated.
• The Keil-Schnell criterion, modified for bunched beams, is

used to obtain the ∆p p required to raise the threshold
current, although it overestimates the severity of the
instability below transition energy.

• Using the peak current and energy spread of the circulating
beam obtained from the longitudinal tracking studies, a
detailed analysis of the stability diagram is made.

II. COUPLING IMPEDANCE ESTIMATION

The longitudinal coupling impedance, Z||, is estimated
using the standard approximations [3-5]. The impedance for the

RCS is dominated by space charge effects. The beam position
monitors (BPMs), rf cavities, and the rf shield also contribute
to the impedance. The contribution of the extraction kickers is
negligible. The impedance due to other components, such as
vacuum ports and bellows, is expected to be negligible because
these are isolated from the beam by the rf shield.
 The results for the longitudinal coupling impedance are
summarized in Table 1. The impedance is normalized by the
mode numbers, n = ω ω0 , where ω0  is the revolution
frequency (1.1 to 1.5 MHz). The coupling impedance of
interest corresponds to the mode numbers n ≤ 500, using the
cutoff frequency ωc = c b , where b is the rf shield radius and c
is the velocity of light. The results in the table correspond to
injection energy (400 MeV), unless otherwise noted. The space
charge impedance is purely capacitive, while the others are
inductive, and include a resistive term.

Table 1: RCS Longitudinal Impedance Estimation (at ωc )

Re Z|| n( )
(Ω)

Im Z|| n( )
(Ω)

Space charge (injection) – – 220
Space charge (extraction) – – 50
Rf shield 0.01 0.01
Rf cavities      14 ** †

BPMs †† 0.1 0.06

** decreasing to zero at ω << ωc  and ω >> ωc

† inductive for ω < ωc , capacitive for ω > ωc

†† valid up to 125 MHz

The impedance due to the rf cavity higher-order modes
(HOMs) was found using URMEL-T [1]. The calculations
correspond to a fundamental frequency of 1.3 MHz, which is
about midway through the acceleration cycle and for which the
ratio Rsh Q  is found to be 105. The frequencies and Rsh Q
for the first few HOMs are listed in Table 2. The value of 14
Ω  for the rf cavities listed in Table 1 is the rf-equivalent
broadband impedance (Q = 1) and corresponds to 10 cavities.

Table 2: Ratio of Shunt Impedance and Q
of First Few HOMs for an RF Cavity

ω res 2π
(MHz)

Rsh Q
(Ω)

5.6 5.5
10.5 0.8
14.8 *** 0.2

*** Extrapolation of ferrite properties beyond
normal operating range of 0.5 to 10 MHz.

To minimize the impedance due to space charge, the
vacuum chamber is constructed with a special rf shield, shown
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in Figure 1. The shield consists of Be-Cu wires which follow
the beam envelope at an aperture equal to the beam-stay-clear
(BSC), given by A = 2βε π + ηD ∆p p + COD, where β is

the lattice function, ε=375π mm-mr is the beam emittance,
ηD is the dispersion function, and COD is the closed orbit
distortion ( ≤ 1 mm). The space charge impedance is calculated
using the standard assumption of a uniform, round, unbunched
beam of radius a  in a vacuum chamber of radius b. The
geometrical factor is given by g0 = 1 + 2 ln b a( ) [3,4].

Compared to a fixed-radius rf shield, this contour-following
scheme reduces the longitudinal space charge impedance by
30% at injection and 20% at extraction.
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Figure 1: Ceramic vacuum chamber cross section
in the focusing quadrupole magnet.

A number of corrections to the geometrical factor have
been proposed to account for the wires and the more realistic
elliptical beam cross-section. The electrostatic fields due to a
uniform beam propagating inside a round rf-screening wire
cage have been derived by T. Wang [6]. A second correction,
derived by H. Okamoto, takes into account the varying
elliptical shape of beam in a smooth, metallized vacuum
chamber without wires and with a fixed radius [7]. These
corrections result in a difference of less than 2% in the
longitudinal impedance, and can be neglected [8].

III. STABILITY CRITERION

A simplified criterion for the longitudinal stability
threshold, commonly referred to as the Keil-Schnell (K–S)
criterion, is independent of the details of the particle phase
space distribution and is given by [3,4]

Z||

n
≤ F

η β 2 E e

Ipk

∆pFWHM

p







2

, (1)

where local values of the current and momentum are used for
bunched beams. Here F ≈ 1 is a form factor, Ipk  is the peak

current, and η is the slip factor.
The K–S criterion imposes a lower bound on the ratio

∆p( )2 Ipk . For a given bunch area, increasing the momentum

spread is more effective in achieving stability than is lowering

the peak current. Therefore, the stability requirement drives the
peak rf voltage. The optimal injected beam parameters and rf
voltage profile through the cycle are obtained through the
simulation studies [2]. The injected beam is chopped, with an
energy spread of ±2.5 MeV and a length of 75% of the
circumference. The time-varying peak current, obtained from
the simulation, and the rf voltage are shown in Figure 2a.

The momentum spread corresponding to the threshold for
the microwave instability is computed by substituting the
impedance listed in Table 1 and the peak current from Figure
2a into Eq. (1). The time-variation in the threshold momentum
spread is plotted in Figure 2b together with the momentum
spread obtained from the simulation. The beam remains in the
stable region through the cycle. The requirement that beam
losses be less than 0.1% is also met.

Figure 2: (a) Variation of the rf voltage and peak current and
(b) threshold ∆p p compared to that obtained from tracking.
The small variations are due to the Monte Carlo statistics.

IV. STABILITY DIAGRAM

Below transition, it is possible to operate the machine
outside the K–S boundary and preserve stability. The stable
region is dependent on both the resistive component of the
impedance and the shape of the distribution tails. The details
are discussed below.

The response of a beam to a periodic perturbation,
exp j Ωt − nϕ( )( ) , is given by the Vlasov equation, where ϕ
is the azimuthal phase coordinate and Ω  is the driving
frequency of the perturbation. The solution to the small-
amplitude Vlasov equation leads to a dispersion relation,
which, for a coasting beam, is given by [9]



1 = − 2
π

I

E e( )β 2 η ∆p p( )2
Z||

n
ID

′ . (2)

ID
′  is the normalized dispersion integral, given by

ID
′ = j

∂f ∂x

x − x1
∫ dx ,

where x = nω − nω0( ) nS( ) , x1 = Ω − nω0( ) nS( ), the full

spread at half maximum of the revolution frequency
distribution is given by 2S = −ηω0 ∆p p( ) , and f x( )  is the

normalized beam density distribution in frequency space. The
imaginary part of the driving frequency leads to growth of the
perturbation. A finite spread in the revolution frequency or,
equivalently, in momentum, gives rise to Landau damping.
The stability boundary is obtained using Eq. (2) evaluated with
ImΩ  = 0.

The stability diagram for the RCS at 2 GeV is plotted in
Figure 3a in the impedance plane for the quartic momentum
spread shown in Figure 3b. Also shown in Figure 3a is the
stability region which satisfies the K–S criterion. The positive
vertical axis denotes capacitive impedance, and the longitudinal
coupling impedance listed in Table 1 is plotted near the
vertical axis as a large dot. The particle momentum
distribution in Figure 3b is obtained from the simulation.

The stability boundary depends specifically on the
momentum distribution and can give a higher limit than the
K–S criterion. However, the upper portion of the stability
boundary, which corresponds to the tails of the distribution, is
highly sensitive to the beam distribution. This can be seen in
Figure 4a, which shows the stability boundary using a
different, smoothed distribution, shown in Figure 4b. Sections
of the stability diagram are marked according to the
corresponding section of the momentum distribution.
Experience shows that in measured data, the tails in the line
density can be rather unpredictable.

The RCS is dominated by the capacitive space charge
impedance, which then determines the resistive Re Z|| n( )
limit for stability. The stable boundary satisfying the K–S
criterion in Figure 3a suggests that the beam is stable at 2
GeV to a threshold Re Z|| n( )  of 70 Ω. This can readily be

achieved in the RCS. A similar analysis at 400 MeV gives a
resistive limit of 550 Ω. The stability criterion is most critical
near extraction because the peak current increases by a factor of
five, while the momentum spread decreases by 30%.

V. DISCUSSION

The microwave instability is avoided in the RCS by
ensuring that the coupling impedance is within the stable
region defined by the K-S criterion. This conclusion is valid
within the assumptions of the theory and the impedance
estimate. Rigid, longitudinal displacements of the bunch and
possible emittance growth could occur in the latter part of the
cycle, such as due to a fixed-frequency rf cavity HOM not
analyzed by URMEL-T. The rf bucket produced by the rf
voltage in Figure 2a grows significantly after the midpoint in
the cycle, and would be sufficient to contain the bunch. Also,

active control is provided by the phase feedback system of the
RCS rf system.

The authors would like to thank K. Thompson for
providing Figure 1.
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Figure 3: Longitudinal stability boundary (a)
for a quartic momentum distribution (b).

Figure 4: Dependence of the longitudinal stability boundary
(a) on momentum distribution, using the distribution in (b).


