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Abstract

The Advanced Photon Source (APS) storage ring is a 7-GeV
light source with 40 straight sections. Intense x-ray beams will
be delivered by 34 insertion devices installed in these straight
sections. The vacuum chamber for the insertion devices has an
elliptical cross section with the gap equal to 8 mm. With this
narrow gap, we estimate that the transverse impedance of the
ring at the revolution frequency could be as high as 36MÄ from
the resistive wall. By increasing the (unnormalized) chromaticity
to 7, we cure the head-tail modes of order up to m=1 for all 60
coupled bunch mode patterns around the ring. Tracking results
show that the increased sextupole strength resulting from a higher
chromaticity does not significantly reduce the dynamic aperture.
Since increased chromaticity alone cannot cure all the head-tail
modes, the APS storage ring will have a feedback system to damp
the rigid-bunch modes.

Introduction Resistive wall impedance can cause the coupled
bunch instability due to the peak near the origin (long range wake-
field or multi-turn effects) as well as the higher-order head-tail
modes via the broad-band tail (short range wakefield or single-
turn effects). Since the growth rate from the resistive wall in-
stability is in general slow, the strategy is to damp the fastest
growing mode of the coupled bunch oscillation by adjusting the
chromaticity slightly above zero, causing the unstable head-tail
modes to become stabilized by the radiation damping and/or
Landau damping.

However, we found that this is not the case for the APS storage
ring.

Resistive Wall Impedance R. Gluckstern, J. Zeitzs and B. Zot-
ter [1] have derived expressions for the longitudinal and trans-
verse resistive wall coupling impedance for a beam pipe of arbi-
trary cross section in the ultra-relativistic limit. Explicit results
for the transverse impedance for the beam pipe of elliptic cross
section with the major axisa and the minor axisb may be written

Zx,y(ω) = (1+ j )
Z0δL

2πb3
Fx,y(q)

≡ Z⊥,circular (b, ω)Fx,y(q), (1)

whereZ⊥,circular (b, ω) is the transverse impedance for the cylin-
drical beam pipe of radiusb and Fx,y(q) is the form factor ex-
pressed in terms of “nome”q = (a−b)/(a+b). The subscripts
x andy denotes the horizontal and vertical impedance, respec-
tively. DenotingZy as Z⊥ and using the fact that the vertical
form factor,Fy(q) is bounded by 0.8 and 1.0 for the entire range
of q, we may approximate Eq. (1) as

Z⊥(ω) ' Z⊥,circular (b, ω). (2)
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Then, Eq. (2) may be rewritten as

Z⊥(ω) = (sign(ω)+ j )Z⊥(ω0)

√
ω0

ω
, (3)

whereZ⊥(ω0) is the impedance evaluated at the revolution fre-
quency. The APS storage ring consists of 34 straight sections for

insertion devices (IDs) with half gap,b, equal to 4mmand length
equal to 6.5 m per each straight section and the remaining sec-
tions withb equal to 2cm. Then the resistive wall impedance,
Z⊥(ω0), from the 34 ID vacuum chambers and the remaining
sections are 34.5MÄ/m and 1MÄ/m, respectively. We esti-
mate that the total impedance for the APS storage ring due to
the resistive wall is 36MÄ/m. In the estimation we used the
resistivity ofAl at room temperature is 3·10−8 Äm, and the skin
depth at revolution frequency of 0.2715M Hz is 168µm.

Rigid Bunch Case Consider a single rigid bunch is circulating
in the ring. The “rigid” bunch means no internal motion inside
the bunch, and the bunch can be approximated as a macro particle
with charge Q. The equation of motion including the wakefield
effects may be written as

d2y

dt2
+ ω2

β y = eQ

γm0

∞∑
k=1

y(t − kT0)
W⊥(kT0)

2πR
, (4)

whereωβ is the free betatron oscillation frequency,T0 is the
revolution period,Q is the total charge of a bunch, andm0 is the
rest mass of a particle. The contributions from all previous turns
are included as a sum in the equation.

Equation (4) may be solved by assuming thaty varies har-
monically asejÄt . The resulting coherent frequency shift may
be written as

1ωc = Ä− ωβ = jCT

+∞∑
p=−∞

Z⊥(pω0+ ωβ), (5)

where

CT = cI0
4πνβE/e

,

c is the velocity of light, I0 is the average current of a single
bunch,E is the total energy of a particle, andνβ is the vertical
betatron tune.

Substituting the resistive wall impedance into Eq. (5),

τ−1 ≡ −Im1ωc = −CT Z⊥(ω0)
√
ω0

∑
p

sign(pω0+ ωβ)√|pω0+ ωβ |
.

(6)
Separating the tune into the integral and fractional parts denoted
asνβ = nβ + 1β and absorbing the integral part into the sum-
mation indices, we find that

τ−1 = −CT Z⊥(ω0)G(2π,1β), (7)



            
whereG(2π,1β) is the familiar Courant-Sessler bunch func-
tion [2]. For M evenly spaced bunches, we replaceI0 by M I0

and the mode frequency changes toωp = (Mp + n)ω0 + ωβ
including the coupled bunch mode numbern ranging from 0 to
M − 1. The resulting expression for the growth rate is

τ−1 = −CT Z⊥(ω0)
√

MG(2π,mod(
n+ νβ

M
)). (8)

The growth rate is positive whenn+νβM lies between an integer and
next lower half-integer, and negative in the other half-interval.
We can easily show that, if M is even, half the coupled bunch
modes are stable and the other half are unstable.

When we applied the above formula to the APS storage ring,
we assumedI0 = 5 m A, νβ = 14.3, andE = 7 GeV and used
Z⊥(ω0) = 36 MÄ. We found that

τ−1 = −42.84
√

MG(2π,mod(
n+ νβ

M
)).

Assuming sixty bunches circulating in the ring, the growth rate
for the fastest growing mode of n=45 becomes

τ−1 ' 3072s−1 > τ−1
R = 106s−1,

whereτ−1
R is the (synchrotron) radiation damping rate. Hence we

conclude that some of the coupled bunch modes grow indefinitely
resulting in possible beam loss. However, by assuming rigid
bunch we ignored an important stabilizing mechanism due to the
internal motion of particles inside the bunch. This is the subject
of the next section with application to the APS storage ring.

Non-Rigid Bunch Case
The general expression for the coherent frequency shift [3]

without considering mode coupling may be written as

1ωm,n = j

1+m
CT M

∑
Z⊥(ω)Hm(ωp − ωξ)

B
∑

Hm(ωp − ωξ) , (9)

where

ωp = (Mp+ n)ω0+ ωβ +mωs,

n = (coupled) bunch mode number,

m = head-tail mode number,

ωξ = chromaticity frequency(ξω0/η),

ξ = chromaticity(1νβ/(1p/p)),

B = bunching factor (bunch length/circumference),

Hm(ω) = self-power density(|λ(ω)|2).
For a beam with Gaussian distribution, we take Hermitian

line-density mode with the Fourier transforms

λm(ω) = Cm j−m(ωστ )
mexp(−ω2σ 2

τ /2), (10)

whereστ is the rms bunch length in time. The factorCm may
be determined such that the denominator in Eq. (9) becomes
unity, i.e. B

∑
Hm(ωp−ωξ). The summation was evaluated by

Zotter [4] who found that

C2
m =

2π

r0(m+ 1
2)
, (11)

where

r = τL

στ
=
{

4 for protons
3
√
π/2≈ 3.76 for electrons,

andτL is the baseline bunch length. Then the normalized power
spectrum has a peak atω = √m/στ + ωξ with values of 0.943,
0.694, 0.681, and 0.676 form = 0, 1, 2, and 3, respectively.
We note that these are equivalent to the maximum values of
Sacherer’s form factor [3] for the electron beam.

Denotingωp0 as the lowest mode frequency andω± = ωp0±
Mω0, we may rewrite Eq. (9) as

1ωm,n = j

1+m
CT (

1

ω0

∫ ω−

−∞
(· · ·) + 1

ω0

∫ +∞
ω+

(· · ·)︸ ︷︷ ︸
“single−turn e f f ect”

+M Z⊥(ωp0)Hm(ωp0− ωξ)︸ ︷︷ ︸
“multi−turn e f f ect”

)

If the chromaticity is zero, the growth rate from the rigid bunch
approximation and the growth rate from the multi-turn effect
should be close to each other. It turns outτ−1 =3072 sec−1 and
3021 sec−1, respectively, showing that the single spectrum line
located nearest the origin has the dominant effect. The numerical
results were obtained by using the program BBI [5].

The stabilization of the lowest mode (m=0) can be achieved
by adjusting the chromaticity to the value greater than zero. The
single-turn effect provides a large damping effect. It is shown
in Fig. 1, where the chromaticity is equal to 1. The maximum
growth rate is still greater than the radiation damping rate.

Multi-Turn EffectRadiation Damping

Single-Turn Effect

Total Effect

Figure. 1. Single- and Multi-Turn Effects onm = 0 Mode at
ξy = 1.0.

Thus, we further increase the chromaticity up to 7 in order to
stabilize both the m=0 and m=1 head-tail modes. The results are
shown in Fig. 2.

However, at chromaticity equal to 7 we found that the higher
head-tail modes become unstable. Figure 3 shows the unstable
modes,m = 3 andm = 4, together with the damped modes,
m= 0 andm= 1.

Even though the excitation of such high head-tail modes was
never observed in the electron storage ring, it is prudent to cure
the instability using the feedback-damper system. The feedback
system has to damp them = 0 growing mode with the chro-
maticity adjusted at zero, where all higher modes,m ≥ 1, are
naturally damped.
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Figure. 2. Growth Rate vs. Chromaticity form = 0 (a) and
m= 1 (b) Head-Tail Modes.
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Figure. 3. Growth Rate for Various Head-Tail Modes atξy = 7.0.

During early operation of the APS storage ring when there are
only 16 narrow ID chambers instead of 34, we may not need the
feedback-damper system because we found that we can stabilize
all head-tail modes up to a beam current of 100 mA by shifting
ξy to∼ 0.32.

Dynamic Aperture With the provision of operating the ring
in high chromaticity, we need to make sure that the ring has
large dynamic aperture. The chromaticity-correcting sextupoles
in the APS storage ring can adjust the chromaticity anywhere
in the triangular region bounded by the three vertices, namely
(ξx, ξy) = (0, 0), (20, 0) and (0, 16), including the diagonal
line up toξx = ξy = 10. The original design value of chro-
maticity for the APS storage ring is equal to zero. The nominal
strengths of the horizontally focusing sextupole (SF) and defo-
cusing sextupole (SD) are

B′′l
(Bρ) = 4.6m−2 (SD), 4.2m−2 (SF).

In order to obtain a chromaticity equal to 7 in both horizontal
and vertical planes, we need to increase the strengths by 14% in
the SF and 10% in SD.

Dynamic aperture reduction due to increased sextupole

strengths, shown in Fig. 4, is not much even without readjusting
the strength of the harmonic-correction sextupoles.

Figure. 4. Dynamic Aperture at Various Chromaticities.
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