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Abstract Assuming a small hole, namekd = 27d/)\ < 1, Bethe
. - L obtained the solution for the magnetic current in the hole as [2]
An analytical formula for the longitudinal coupling impedance
of a hole is developed using a variational method. We show p 2kZy
that the coupling impedance can be expressed as a sum of fufit* ™ = — & — ep x Bo+j——1/d* — p* Ho, 2)
. . . : . . P
tional series, whose argument is the dimensionless qudrtity I
alone, wherék is the free-space wave number ahdk the ra- Im.B ’

dius of the hole. When expanded in powerskdf we recover \yhereE, and H, are the field evaluated at the center of the

the long wavelength result as a limiting case. The numerigdl|e in the absence of the hole ahg » andJ,, ;; denote the

evaluation reveals that the impedance can be well modeled ¥y netic current induced in the hole due to the incident electric
an RLC-resonator circuit. We also show the qualitatively goog,q magnetic fields, respectively.

agreement between the theory and the MAFIA-T3 simulationThe magnetic field from the unit source current can be ob-

for the geometry of a hole in a coupled waveguide with rectagsined using the image principle. In the plane of the hole, it
gular cross section. becomes

I b . B
. PROBLEM STATEMENT Hy = =g, Ho =0, 3)

The geometry of our problem is shown in Fig. 1 where where the coordinate system defined in Fig. 1 is used.
charge is moving in the z-direction with velocity close to the Assuming a small hole in which the field strength is uniform
speed of light. The distance between the plane screen anddbiethe phase is varying, we may rewrite the source field as
beam path i$, and the origin of the coordinate is at the center of

the hole_with radiugl. The local cylindrical coo_rdin_ate system H, = Hy — jkzH, + O(k?), whereH, = _I_%ex. (4)

(p,8,y) is also shown. We calculate the longitudinal coupling Q

impedance for this geometry. Then, the longitudinal coupling impedance becomes
AZ,d>H}
. : Lo Za (k) = / T - HdS = j=25Lk, ()
hole
270d3HE

[1o|*ZE (k) = / I i - H]dS = —j==—Lk, (6)

d 7 hole 3

— —— p 2Z d3H2
4 P70 = Zu(k)+ Ze) = 2250 )

.,

which results inZ (k) = (220d®/37%b%)k.

If we apply the above formula to a cylindrical beam pipe
,,,,,,,,, /BN of radiusb with a hole of radiusi, the longitudinal coupling
impedance becomes, wifl, = 2% in Eq. (7),

Figure 1. Infinite Flat Screen with a Hole.

3
II. LOW FREQUENCY SOLUTION Z(k) = jﬂk, (8)

6r2b?
DenotingE, andH, as the fields withoutthe hole alit and \hich is exactly the same as the well-known results [1].

H- as the fields with the hole, we can express the longitudinal
coupling impedance as [1] 1. VARIATIONAL SOLUTION

A. Variational Formalism

L|*Z(k) = E.) -Hid 1
"2 (k) /,w,e(nx 2) - HidS, @) We begin by defining an “impedance functional” which is sta-

tionary with respect to the unknown quantity (magnetic current
wheren x E» = J,, isthe magnetic currentinduced in the holegensity in the hole).

which is not known until we solve the problem. We define the impedance functiorlas
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ences under contract No. W-31-109-ENG-38. Z= J (E2 El)dv’ (9)



In the above definition, as we subtracted the contribution fromIt may be interesting to compa@g)(k) andZ}}) expanded
the source field, the entire contributionis from the scattered figtdpowers oftd. We find that
which satisfies the homogeneous Maxwell's equations. We note

that if the electric field is real, the longitudinal impedance is 1y _ 32Zyd’H} )
the complex conjugate of the impedance functioti&li) = H = M (kd)
Z* (k). 47Z0d* H

If the integrating surface is chosen to coincide with the plane —i—j%(kzd) (1 )
of the screen wher&; satisfies the boundary conditian x I
E, =0, Z reduces to ZJ(E}) — 8Zod"Hy (kd)* 1_ - kd 24.

27w
= . . 270d*HE

By using Rumsey'seaction concepf3], [4], we can derive

the variational expression f&f as [5] In the low frequency range, it is found that(® ~
7(2Z0d® H3 /3)k, which is the same as the low frequency result
) US H - (n x E*)dS : four_ld in the previous section. .
= — S , SinceH, ~ b~', the above result shows that the impedance
djwe [g [s,m x B4 (x)]- Go(r[r') - [n x B4 (r')]dSdS" " gcales agd/b)?.
(11)

whereH' is the incident magnetic field on the screen (previously °*“ ] Re g,
denoted a$l,), E* is the assumed electric field in the hole, and " IR ]

Go(r|r’) is the free-space dyadic Green's function. ] e

The above formula is a homogeneous equation in the seﬂsewé ]
that the result does not depend on the amplitude of the assurfed,,; e T

electric fieldE“. If a proper dyadic Green's function is used, .|
this is a general expression for the impedance functional of an ...
aperture in a conducting plane as long as the plane is the sym-..t E
metry plane separating two regions, namely, an infinite plane or o« I m oz
coupled waveguide structure. Details of the calculation deperid >« :
on the shape of the aperture and the assumed tangential electric’;
field in the aperture. ‘ e —"

gaa!

B. Results . : ; s ) :

kd

In order to evaluate the variational expression representediiyjure 2. Comparison of Impedances due the Incident Magnetic
Eg. (11), we assume a trial function fBf based on the Bethe'sField, 7, and Electric Field7 .

solutionin Eq. (2):
Numerical results OZ}}) andeEl) are presented in Fig. 2. It

nxE* = e, nf bop (1— _z) I-nie, nio tn(1— é)n— 3 s_hows that the impedance of magnetic t;pris_ n_1ain|y ind_u_c-
=i d ot d tive (/m Zy > 0), and the electric typ£€r exhibits capacitive

(12) behavior {m Zg < 0).
This field satisfies Meixner's “edge-field” condition [6]. The results, using the three teré®) = Z D+ 72 are

The coefficients:, andb,, are unknown quantity and depenshown in Fig. 3, from which we find that the maximum value

dent on the frequency. We used the method developed by Leviiere Z(k) is Re Z(k)mar = 0.216Z,. For all other d/b, it
and Schwinger [7] to determine these coefficients, and the gecomesie Z(k,d/b)maz = 0.216 Z0(d/b).

tailed results can be found in [5].

Once ther,, andb,, coefficients are determined, we can use ,
them to calculate the longitudinal coupling impedance. It turns °-2°F =
out that the coupling impedance is numerically equal to the . .f Zf X‘x
impedance functional. We also found that the magnetic current N\%
from the electric and magnetic field does not couple in contriby- ‘ \ K
tion to the coupling impedance. Thus we write the |mpedanEe 0.05[ SN

-/
b AT ] Real

Z(N+M) _ ZEN) +Z}(ZIM)’ (13) \ [ |Maginary
where M or N denotes the order of approximation or the number B i e
of terms used for trial fields. i 2 3 r 5

kd
~ We found that the coupling impedance does not have the stationary propértgure 3. Variational Results Using Three-Term Electric Field.
in general. (The ratio d/b=1.0 is used.)



IV. BROADBAND RESONATOR MODEL We compared the variational results with a MAFIA-T3 [8]
%imulation. The geometry used in the MAFIA-T3 simulation
as a 2 cm-by-1 cm rectangular waveguide with a hole of vary-
129 radius on the 1-mm-thick common wall.
‘The results for the hole with a radius of 1 mm correspond-
ing to d/b=0.2 are shown in Fig. 5. The agreement between the

Since the impedance shown in Fig. 3 is similar to t
impedance of a parallel RLC-resonator circuit, it would be us
ful if we described the impedance in terms of circuit paramete
The impedance of an RLC-resonator circuit is

R two results is qualitatively good. From the range of frequency
Z(w) = ) v o\ (14)  we can conclude that the appropriate length scale is the size of
1+jQ (E - 7) the hole and not the size of the waveguide. Thus the scaling

we found in the previous section also applies to the waveguide

wheref is the shuntimpedance) is the quality factor, and,  geometry.

is the resonant frequency.

The resonant frequency and the quality factor can be re =
from Fig. 3. For the@ value, we used the definitio) = :!
wy /2Aw, where|Z (w)| at the frequency = w, + Aw is0.707 xi
of its maximum value. The shunt impedance can be determirga

L

in two ways. We can either use the impedance in the low fr
quency limit, Z (k) = j(2Zod®>HZ/3)k, or the impedance at
resonance? (k) = 0.216%,(d/b)*. Denoting these two models
as BBR-1 and BBR-2, respectively, the circuit parameters ¢
shown in Table I.

R O S O O L L N L L L]

Table |
Circuit Parameter Based on BBR Model

Model Wy Q R
BBR-1 | 1.35(c/d)| 1.8 | 0.1647,(d/b)?
BBR-2 | 1.35(c/d)| 1.8 | 0.2167,(d/b)?
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We compared the impedances from the two models witk : . .
the variational result, which is shown in Fig. 4. Note thaﬁ??nl;;eifihecggfhlg% wgfedir;gg of the Hole with a Radius of
(Z(k)/Zy)/kd is plotted, which is the useful quantity in the in- P 9 '
stability calculation. References
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V. APPLICATION TO ACCELERATOR
CHAMBER

We also applied the above results to the accelerator chamber.
As a model geometry we considered the rectangular waveguides
coupled by the hole in the common wall. In the analysis, we
used the image charges in order to remove the waveguide wall.
By doing so we could investigate the contributions from the real
charge and the image charges to the impedance separately. We
found that the image-charge contribution is small, as long as d/b
is small [5].
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