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Abstract

An analytical formula for the longitudinal coupling impedance
of a hole is developed using a variational method. We show
that the coupling impedance can be expressed as a sum of func-
tional series, whose argument is the dimensionless quantitykd

alone, wherek is the free-space wave number andd is the ra-
dius of the hole. When expanded in powers ofkd, we recover
the long wavelength result as a limiting case. The numerical
evaluation reveals that the impedance can be well modeled by
an RLC-resonator circuit. We also show the qualitatively good
agreement between the theory and the MAFIA-T3 simulation
for the geometry of a hole in a coupled waveguide with rectan-
gular cross section.

I. PROBLEM STATEMENT

The geometry of our problem is shown in Fig. 1 where a
charge is moving in the z-direction with velocity close to the
speed of light. The distance between the plane screen and the
beam path isb, and the origin of the coordinate is at the center of
the hole with radiusd. The local cylindrical coordinate system
(�; �; y) is also shown. We calculate the longitudinal coupling
impedance for this geometry.
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Figure 1. Infinite Flat Screen with a Hole.

II. LOW FREQUENCY SOLUTION

DenotingE1 andH1 as the fields without the hole andE2 and
H2 as the fields with the hole, we can express the longitudinal
coupling impedance as [1]

jI0j
2Z(k) =

Z
hole

(n�E2) �H
�

1dS; (1)

wheren�E2 � Jm is the magnetic current induced in the hole,
which is not known until we solve the problem.
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Assuming a small hole, namelykd = 2�d=� � 1, Bethe
obtained the solution for the magnetic current in the hole as [2]
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�
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| {z }
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+ j
2kZ0
�

p
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whereE0 andH0 are the field evaluated at the center of the
hole in the absence of the hole, andJm;E andJm;H denote the
magnetic current induced in the hole due to the incident electric
and magnetic fields, respectively.

The magnetic field from the unit source current can be ob-
tained using the image principle. In the plane of the hole, it
becomes

Hx = �
I0

�

b

x2 + b2
e�jkz; Hz = 0; (3)

where the coordinate system defined in Fig. 1 is used.
Assuming a small hole in which the field strength is uniform

but the phase is varying, we may rewrite the source field as

H1 =H0 � jkzH0 +O(k
2); whereH0 = �

I0

�b
ex: (4)

Then, the longitudinal coupling impedance becomes
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Z
hole

Jm;H �H�
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k; (5)
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jI0j
2Z(k) = ZH (k) + ZE(k) = j

2Z0d
3H2

0

3
k; (7)

which results inZ(k) = (2Z0d
3=3�2b2)k.

If we apply the above formula to a cylindrical beam pipe
of radiusb with a hole of radiusd, the longitudinal coupling
impedance becomes, withH0 =

I0
2�b

in Eq. (7),

Z(k) = j
Z0d

3

6�2b2
k; (8)

which is exactly the same as the well-known results [1].

III. VARIATIONAL SOLUTION
A. Variational Formalism

We begin by defining an “impedance functional” which is sta-
tionary with respect to the unknown quantity (magnetic current
density in the hole).

We define the impedance functionalZ as

Z = �

Z
J � (E2 �E1)dV: (9)



In the above definition, as we subtracted the contribution from
the source field, the entire contribution is from the scattered field
which satisfies the homogeneous Maxwell's equations. We note
that if the electric field is real, the longitudinal impedance is
the complex conjugate of the impedance functional,Z(k) =
Z�(k)1.

If the integrating surface is chosen to coincide with the plane
of the screen whereE1 satisfies the boundary conditionn �
E1 = 0, Z reduces to

Z =

Z
H1 � (n�E2)dS: (10)

By using Rumsey'sreaction concept[3], [4], we can derive
the variational expression forZ as [5]
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(11)
whereHi is the incident magnetic field on the screen (previously
denoted asH1), Ea is the assumed electric field in the hole, and
G0(rjr

0) is the free-space dyadic Green's function.
The above formula is a homogeneous equation in the sense

that the result does not depend on the amplitude of the assumed
electric fieldEa. If a proper dyadic Green's function is used,
this is a general expression for the impedance functional of an
aperture in a conducting plane as long as the plane is the sym-
metry plane separating two regions, namely, an infinite plane or
coupled waveguide structure. Details of the calculation depend
on the shape of the aperture and the assumed tangential electric
field in the aperture.

B. Results

In order to evaluate the variational expression represented by
Eq. (11), we assume a trial function forEa based on the Bethe's
solution in Eq. (2):
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2 :

(12)
This field satisfies Meixner's “edge-field” condition [6].

The coefficientsan andbn are unknown quantity and depen-
dent on the frequency. We used the method developed by Levine
and Schwinger [7] to determine these coefficients, and the de-
tailed results can be found in [5].

Once thean andbn coefficients are determined, we can use
them to calculate the longitudinal coupling impedance. It turns
out that the coupling impedance is numerically equal to the
impedance functional. We also found that the magnetic current
from the electric and magnetic field does not couple in contribu-
tion to the coupling impedance. Thus we write the impedance
as

Z(N+M) = Z
(N)

E + Z
(M)

H ; (13)

where M or N denotes the order of approximation or the number
of terms used for trial fields.

1We found that the coupling impedance does not have the stationary property
in general.

It may be interesting to compareZ(1)

E (k) andZ(1)

H expanded
in powers ofkd. We find that
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In the low frequency range, it is found thatZ(2) '
j(2Z0d

3H2
0=3)k, which is the same as the low frequency result

found in the previous section.
SinceH0 � b�1, the above result shows that the impedance

scales as(d=b)2.

Figure 2. Comparison of Impedances due the Incident Magnetic
Field,ZH , and Electric Field,ZE .

Numerical results ofZ(1)

H andZ(1)

E are presented in Fig. 2. It
shows that the impedance of magnetic typeZH is mainly induc-
tive (Im ZH > 0), and the electric typeZE exhibits capacitive
behavior (Im ZE < 0).

The results, using the three termsZ(3) = Z
(1)

E + Z
(2)

H
, are

shown in Fig. 3, from which we find that the maximum value
of Re Z(k) is Re Z(k)max = 0:216Z0. For all other d/b, it
becomesRe Z(k; d=b)max = 0:216Z0(d=b)

2.
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Figure 3. Variational Results Using Three-Term Electric Field.
(The ratio d/b=1.0 is used.)



IV. BROADBAND RESONATOR MODEL

Since the impedance shown in Fig. 3 is similar to the
impedance of a parallel RLC-resonator circuit, it would be use-
ful if we described the impedance in terms of circuit parameters.
The impedance of an RLC-resonator circuit is

Z(!) =
R

1 + jQ
�

!
!r
� !r

!

� ; (14)

whereR is the shunt impedance,Q is the quality factor, and!r
is the resonant frequency.

The resonant frequency and the quality factor can be read
from Fig. 3. For theQ value, we used the definitionQ =
!r=2�!, wherejZ(!)j at the frequency! = !r +4! is 0:707
of its maximum value. The shunt impedance can be determined
in two ways. We can either use the impedance in the low fre-
quency limit,Z(k) = j(2Z0d

3H2
0=3)k, or the impedance at

resonance,Z(k) = 0:216Z0(d=b)
2. Denoting these two models

as BBR-1 and BBR-2, respectively, the circuit parameters are
shown in Table I.

Table I

Circuit Parameter Based on BBR Model

Model !r Q R
BBR-1 1.35(c/d) 1.8 0.164Z0(d=b)2

BBR-2 1.35(c/d) 1.8 0.216Z0(d=b)2

We compared the impedances from the two models with
the variational result, which is shown in Fig. 4. Note that
(Z(k)=Z0)=kd is plotted, which is the useful quantity in the in-
stability calculation.

Figure 4. Comparison of Impedances from Variational Solution
and Broadband Resonator Model.

V. APPLICATION TO ACCELERATOR
CHAMBER

We also applied the above results to the accelerator chamber.
As a model geometry we considered the rectangular waveguides
coupled by the hole in the common wall. In the analysis, we
used the image charges in order to remove the waveguide wall.
By doing so we could investigate the contributions from the real
charge and the image charges to the impedance separately. We
found that the image-charge contribution is small, as long as d/b
is small [5].

We compared the variational results with a MAFIA-T3 [8]
simulation. The geometry used in the MAFIA-T3 simulation
has a 2 cm-by-1 cm rectangular waveguide with a hole of vary-
ing radius on the 1-mm-thick common wall.

The results for the hole with a radius of 1 mm correspond-
ing to d/b=0.2 are shown in Fig. 5. The agreement between the
two results is qualitatively good. From the range of frequency
we can conclude that the appropriate length scale is the size of
the hole and not the size of the waveguide. Thus the scaling
we found in the previous section also applies to the waveguide
geometry.

Figure 5. Coupling Impedance of the Hole with a Radius of
1 mm in the Coupled Waveguide.
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