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Abstract the same. The Hamiltonian is modified to
In proton machines, potential-well distortion leads to small 202
amount of bunch lengthening with minimal head-tail asymmetry. H=1%42 4 @(1 — D«¥? 7, (2.2)
Longitudinal mode-mixing instability occurs at higher azimuthal 200 2
modes. When the driving resonance is of broad-band, the threghs e
old corresponds to Keil-Schnell criterion for microwave instabil- 3e?Npcd Z
ity. [1] When the driving resonance is narrower than the bunch D= 2FE53 nl| (2.3)
L . . . 4'j'l"‘)s:OEZO n ind
spectrum, the threshold corresponds to a similar criterion derived .
before. [2] The incoherent synchrotron angular frequency is therefgre
wsp(1— Dx®?)Y2, Since the distribution (z, §) must be a func-
l. Introduction tion of the Hamiltonian, we obtain the constrait= 1— D« /2.

) Take a Fermilab Main Ring bunch witN = 2.5 x 10 at
Proton bunches are very much different from electrog _ 15q Gev, bunch area 0.15 eV-sec, and synchrotron tune

bunches. First, electron bunches have a length roughly eqyal _ 4 5930, The accelerator ring has a revolution frequency

to the radius of the beam pipe, whereas proton bunches are USU= 477 kHz, a phase-slip parametgr= 0.0028, and the
ally very much longer. Second, the momentum spread of trﬂﬁjuctive impedance is believed to t&/njiy ~ 10 Ohms.
electron bunches is determined by the heavy synchrotron rady enD — 0.204, indicating that the bunch has been length-

tion. Protons do not radiate and behave quite differently in tlg% d bye~Y/2 = 1.05 and the momentum spread flattened by
longitudinal phase space, with the bunch area conserved instead. t1is impli '

The_se differences "?a_d to different res_ults_ in poten_tial-well diﬁy naively measuring the bunch length and the synchrotron fre-

tortion and mode mixing, which we will discuss briefly belowquency through the relatioh — wsoTL /1, because the answer

The details are given in a separate paper. [3] will be 10% too large, giving a wrong idea about the amount of

. . . Landau damping. Instead, the momentum spread should be mea-

Il. Potential-Well Distortion sured from Schottky signals or inferred through dispersion from

As an example, the bunches in the Fermilab Main Ring hattee measurement of the transverse profile of the bunch using a

a typical full length of~ 60 cm orr. ~ 2 ns. The spectrum flying wire.

has a half width of~ 0.5 GHz. Therefore, the static bunch o

profile is hardly affected by the resistive part of the broad-band Ill. Mode-Mixing

impedance which is centered abl~ 2 GHz. As a result, the

inductive part of the broad-band will only lead to a symmetriﬁsing Vlasov equation. Here, we follow the Sacherer's ap-

broadening (shortening) of the bunch above (below) transitiqfy, 51y (6] The coherent side-band synchrotron angular frequen-
Numerically solving the Hiasinski equation [4] confirms this a5, can be obtained from the determinant

conjecture. Strictly speaking, the idainski equation does not
apply to proton bunches where the bunch area is conserved and l(@ — Mws)dmm — Mmmi| = 0. (3.1)
the momentum spread is not a fixed Gaussian.

Since the driving impedance is inductive, the wake potentialThe longitudinalimpedancg(n) in the matrix elementsl,y =
the derivative of thé-function. For a parabolic bunch, the wake ws Amny is responsible for the coupling of the azimuthal modes,
force will be linear and can be superimposed onto the linearizeith L
rf force easily. We use for the distribution in longitudirab A __M > nlinr Z(n)/nlhmm (n)
phase space, [5] ™ M1 > Pm(n) ’

The shifts of the synchrotron side-bands can be derived

(3.2)

5 wherehpm () = X% (N)Ay(n) are the overlap of the spectral
v (z,8) = 3ncN \/AZ _1 (”_C3> k22, (2.1) functionim(n) of the bunch obtained by solving the mathibpr.
2r w23 K \ wso In the above¢ = €(wso/ws)?, € = Ip(Rs/N;)/(3BFNV cosg),

. . ) ) I, the average bunch currert, the resonant impedance cen-
where  is the phase-slip parameter,the velocity of light, tered atf, = n, f, and normalized to the shunt impedarRe

wso/2r the unperturbed synchrotron frequency, dthe num- , nherurbed rf voltageps the synchronized phash, the rf

ber of particles in the bunch. The original half length of thg, . ohic B- — 71 . the bunching factor. and the full bunch
bunchz, has been lengthened #g/./x, whereas the momen- oot in ée?:. o 9 , ane

tum spread is shortened by/i, so that the bunch area remains  pqential-well distortion has been neglected in the formulation,

* Operated by the Universities Research Association under contracts with m%cau_se the eﬁeLCt 1S S_ma“ for proton r_naChmeS' We will use a
U.S. Department of Energy. prescribed set ok (p) instead of the eigenvectors. Although




self-consistency will be lost, we do think that the essence of the ¢ T

results will not be affected. We use Sacherer’s sinusoidal bunch
profiles. The spectral functions are

m
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=2

m
-
=2

m+1 coszx/2

Am(p) = (=" Z—me D

(3.3)

whenm is even and with cosine replaced by sine wimens
odd. Adimensionless frequency parametet 2nfyr. has been
introduced, so that, with the exceptionmaf= 0, the spectrum
for the mth mode peaks at ~ m + 1. Continuing with the
example of the Fermilab Main Ring which has a broad band
impedance centered at = 7.5 or f, ~ 1.88 GHz andQ ~ 1, L L

we find the colliding of modes 6 and 7 in Fig. 1, and the bunch 0.05 0.10 050 1.00
becomes unstable at= 0.94. This is expected, because the Relative Width of Resonance z = Afry
symmetries of Egs. (3.2) and (3.3) show tRa¥ is responsible

for the coupling between two adjacent modes. Note that theig 5 instability thresholds, ande/,, for various widths of the resonance
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ordinate of Fig. 1 is normalized with respect to the unperturbed impedance located a = 3.5t0 11.5.
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Fig. 3. Enhancement gReZ/n)max (hormalized toRs) and its frequency

positionx as the quality facto of the resonance centeredat= 7.5

0.0 0.5 1.0 1.5 2.0 d
€ = 1,(R,/n,)/(3B;°hVcosg,) ecreases.
Fig. 2. Coupling of modem = 6 and 7 in th f t . . ,
0 O e andO =1 | o esanance IV. Microwave Instability Driven by Broad
Resonances
We vary Q and compute the threshotg, in each case. The Microwave instability can occur when the resonance is

result is plotted in Fig. 2 versus = Af,r. = X /4Q, where Much wider than the bunch spectrum. When this happens, many
Af, = f,/2Q is the HWHM of the resonance. Also plotted aréoherent modes are excited. Therefore the threshold atsha
threshold curves at different resonant frequengjesNote that €nd.em ~ 0.75, is the threshold of microwave instability. This
allthe curves approach a minimum thresholeypf~ 0.92atz ~  threshold condition can be easily rewritten in terms of the en-
0.6. The latter has the physical meaning of the resonance p&®y spread AE)rwnm = 3(AE)wi and peak bunch current
just wide enough to cover only two coupling modes. A smalldp = 7 Ib/27L o Of the sinusoidal profile as

z implies that the resonance peak is too narrow and interacts )
with only parts of the two mode spectra, thus giving a higher Rs §€ n(E/e) <AE> (4.1)
instability threshold. A larger means that the resonance will n 4 n lp FWHM '

cover more than two mode spectra. kpr= 7.5 say, modes 6 _ = N - ] o
and 7 will then be pulled and pushed also by the other modggl,ls is the familiar Boussard-modified Keil-Schnell criterion [1]

so the threshold for their collision is expected to be higher al<¥.microwave instability driven by a broad resonance. The form
However, Eq. (2.2) reveals that the coupling comesiin notthrom(ﬁr‘?tor for this type of bunch shape should be slightly bigger

. . . 7 .
ReZ(n) but througReZ(n)/n, whose peak value becomes largef@n unity, which is very close tééeth = 1.3 obtained here.
and the peak frequency smaller wh@ris small, as illustrated in The equivalence of mode-coupling and microwave instability

Fig. 3. As a result, the lower modes start to collide first (Fig. 4)ad been pointed out by Sacherer [6] and Laclare. [7]
Thus the threshold for largeremains small, which is very much  \nhenz ~ 0.6. ReZ is just wide enough to cover two adjacent
different from what Sacherer stated in his paper. azimuthal modesiandm’ = m+1, and the excitation is one with

E



it is just the criterion of microwave instability driven by an
impedance resonance that is narrower than the bunch spec-
trum. [2] The form factor is 0.41, which agrees very well with
%et’h ~ 0.40. This may be a more appropriate microwave in-
stability threshold for electron machines, since electron bunches
are short.

@

VI. Going Below Transition

Figure 1 shows that the coherent frequencies tend to cluster
together when the curremtincreases. This is because we are
above transition, cag; < 0. Looking into the diagonal ele-
ments of EqQ. (3.2), modes with < x, — 1 (> x, — 1) sample
the inductive (capacitive) part of the impedance and are shifted
upward (downward). Below transition, the shifts will be in the
opposite direction; i.e., diverging outward with increasingn
other words, the mode-mixing threshalg, will be increased,

Fig. 4. Mode coupling starts at the lowest modes when the driving resonanc@lsthe bunch becomes more stable. We tried to reverse the sign

much wider than the bunch spectrum. Here=7.5,Q = 0.2,7. =2ns,or  Of cosgs in the example of Fig. 1 and foursg, increases from
z=375. 0.94 to 1.88. Therefore, a bunch in a machine with a negative

momentum-compaction factor [8] will be more stable. This idea

% = %(m+3) nodes along the bunch. The coupling matrix ¢ IP]ad been pointed out by Fang et al [9] in shortening electron
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be truncated to include only these two modes. From Eq. (3.
the eigen modes are

w

Ws

= % |:(Vm +vm) £ \/(Vm’ - Vm)2 - 46—2Aﬁqmj| s (4-2) [1]

wherevg = K + € Ak, k = morm’. The threshold of instability [2]
€ IS therefore given by 3]

[4]

(4.3) [5]

|6_thAmm| = %|€_th(Am’m’ - Amm) - 1| .
The matrix element®&ym, Anvnr, andAny have been computed
numerically for any two adjacem, m’, with the resonance peak[6]
centered ak, = %(m + 3). The result is actually very close
to e;n, = 0.92 and depends om very weakly. It can also be
estimated easily. SinCAwm ~ Anm, We havelen Anm| ~ 3. (8]
If we further approximate the resonance and adjacent spectra by
rectangular curves, we g | ~ 0.5. [9]

V. Microwave Instability Driven by Narrow
Resonances

When the resonance is much narrower than the width of the
bunch spectrum, we hawe « 1. Then, the summation over
frequency in Eq. (3.2) can be approximated by

2

n

X Z(Nn) X

Rt (M) & =<5 A% Ay [k - (5.1)

For this, we need a new dimensionless current pararaéter
2l b(RS/Q)/(3B§hV cos¢s). This new threshold},, is now plot-
ted versug in Fig. 2. For smallz, we obtaine;,, ~ 0.75 which
is almost independent of . Again, this threshold can be com-
puted numerically using the truncateck2 coupling matrix, or
estimated by approximating the spectral functions by rectangular
curves. When it is cast into the form

Rs 27 , n(E/e (AE)Z

QO 1er T,

- , (5.2)

FWHM

ynches.
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