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Abstract

For a Vlasov treatment of longitudinal stability under an arbi-
trary wake field, with the solution of the Ha¨ıssinski equation as
the unperturbed distribution, it is important to have the action-
angle transformation for the distorted potential well in a conve-
nient form. We have written a code that gives the transformation
q, p→ J, φ, with q(J, φ) as a Fourier series inφ, the Fourier
coefficients and the HamiltonianH(J) being spline functions of
J in C2 (having continuous second derivatives).

I. The Canonical Transformation
We suppose that the Hamiltonian has the form

H = p2

2
+ V(q), (1)

whereV(q) is a potential well with continuous derivative. We
discuss only values of the constantH such that the motion con-
sists entirely of oscillations between two turning points at which
p = 0. We denote the turning points byq0 andq1, with q0 < q1,
and exclude values ofH for which eitherV ′(q0) or V ′(q1) is
zero. We define

p(q, H) = ±
√

2[H − V(q)], (2)

wherep > 0 asq moves fromq0 to q1, andp < 0 as it returns
from q1 to q0. The action integral, which extends over a full
period of the motion, is

J(H) = 1

2π

∮
p(q, H)dq = 1

π

∫ q1

q0

p(q, H)dq. (3)

Thanks to our assumption thatV ′(qi ) 6= 0, there is a well-defined
inverse functionH(J).

Hamilton’s equations imply thatp = dq/dt. If t = 0 at
q = q1, the timet for displacementq is

t =
∫ q

q1

dq′

p(q′, H)
(4)

where the integration path is understood to follow all oscillations
that occur by timet : q1 −→ q0 −→ q1 −→ · · · −→ q(t).
Since H depends only onJ, Hamilton’s equations in action-
angle variables give8 = 80 + H ′(J)t . Choosing8(q1) = 0,
we have

8(q, H) = H ′(J(H))
∫ q

q1

dq′

p(q′, H)
(5)

We wish to find the functionsq(J,8), p(J,8), andH(J) in
a form that will be convenient for repeated and fast numerical
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evaluations, with 2π -periodicity in8 guaranteed. We also want
these functions to have continuous second derivatives in both
variables. These requirements arise from an intended application
in solutions of the Vlasov equation with Fokker-Plank term, as
discussed below. A convenient expression of the functions is

q(J,8) =
∞∑

m=0

qm(J) cosm8 (6)

p(J,8) = ∂q(J,8)

∂8
H ′(J) (7)

with qm(J) andH(J) expanded in terms of someC2 basis func-
tions Bk(J) andCk(J):

qm(J) =
∑

k

qmkBk(J) (8)

H(J) =
∑

k

hkCk(J) (9)

The formula (7) follows from the derivative of (5) with respect
to8, if we recall thatH is only a function ofJ when written in
action-angle coordinates.

If the series (6), (8), and (9) are truncated at a finite number
of terms, the resulting transformationJ,8 −→ q, p will not be
precisely canonical (i.e., symplectic). A measure of symplectic-
ity is the agreement ofp as given in (7) with

p(J,8) = ±
√

2[H(J)− V(q(J,8))]. (10)

If p is given by (10), a calculation of the Poisson bracket yields

[q, p] = 1

p

∂q

∂8

d H

d J
. (11)

Thus, if p from (7) agrees withp from (10), we have a canonical
transformation, since [q, p] = 1. With a moderate number of
terms in the series (6), (8), and (9), the transformation can be
made to satisfy the canonical condition with sufficient precision
for our purposes.

II. The Primary Integrations
We first evaluate the integrals (3) and (5) on a regular mesh in

H : {Hi |i = 1, . . . , K }. The turning pointsq0(Hi ) andq1(Hi )

are easily found by a Newton iteration. The factorH ′(J(Hi )) is
defined at eachi by

π = H ′(J(Hi ))

∫ q0

q1

dq

p(q, Hi )
. (12)

For numerical integration, it is useful to change the variable to

u = cos−1 q1+ q0− 2q

q0− q1
. (13)



             
The inverse of this transformation is

q = q0+ q1

2
+ q1− q0

2
cosu. (14)

Then (5) becomes

8(q, Hi ) = q1− q0

2
H ′(J(Hi ))

∫ u(q)

0

sinu′ du′√
2[Hi − V(q(u′))]

.

(15)
The integrand is now free of singularities. For a nearly quadratic
potential,8 is close tou. The same change of variable is used
to computeJ(Hi ) by (3).

Now u = π corresponds toq = q0. We divide the inter-
val [0, π ] into N intervals, and integrate by Simpson’s rule [1].
The first and last intervals are treated by an open Newton-Cotes
formula [1], to avoid taking the limit of the integrand at the end-
points. We evaluate the integrand (15) for upper limitu at all of
the mesh pointsui . The value ofN is increased until the integral
on [0, π ] converges to machine precision.

III. Finding the Fourier Coefficients
After the integrations, the angles8( j ) = 8(q(u j ), Hi ) are

known, with theu j on a large regular mesh ofN + 1 points.
To evaluate the Fourier coefficientsqm for |m| ≤ M , we search
through the8( j ) to find those that are closest to the points one
would normally use in a discrete Fourier transform, namely the
points

πk

M
, k = 0, . . . ,M. (16)

Denoting those angles by8k, and the corresponding values of
q(u j ) by q(k), we solve the following linear equations for the
Fourier coefficients:

q(k) =
M∑

m=0

qm cosm8k, k = 0, . . . ,M (17)

We solve this system as follows: if we assume that the function
q(φ) can be expressed exactly as

q(φ) =
M∑

m=0

qm cosmφ, (18)

then we can writeq(8k) in terms of the valuesxk = q(πk/M)
as

q(8k) = 1

2M

{
x0 cot

8k

2
sinM8k

+xM cot
8k − π

2
sinM(8k − π) (19)

+
M−1∑
n=1

xn
sin8k

sin(8k + πk/M)

sinM(8k − πk/M)

sin[(8k − πk/M)/2]

}
This linear system can then be solved for thexk, the function
values at the mesh points. The discrete Fourier transform of the
xk then gives the coefficientsqm. The advantage of this is that
the system (19) is very well conditioned if the8k are close to
the mesh points (16); this is why we chose the mesh points8k

as described above.
The system (17) can also be solved as a Vandermonde system.

There areO(n2) direct methods for solving such a system which
should work very well [2].

IV. Expressing the Transformation as a Function of
J

Let q(i )m and J(i ) denote the values ofqm and J at H = Hi ,
as determined by the procedure just described. To get the re-
quired functions ofJ, we invoke the expansions (8) and (9), and
determine the coefficients by solving the linear systems

q(i )m =
∑

k

qmkBk(J
(i )) (20)

H (i ) =
∑

k

hkCk(J
(i )), (21)

wherei = 1, . . . , K . A possible improvement is to use the values
of H ′(J(i )) as determined in (12) for an additional constraint on
the functionH(J). One would then use a larger set of basis
functionsCk, and augment (21) with the additional equations

H ′(J(i )) =
∑

k

hkC′k(J
(i )), i = 1, . . . , K (22)

This step should make the whole scheme more self-consistent,
and could be quite worthwhile.

V. Example
We have written a code which finds the transformation de-

scribed for an arbitrary differentiable potentialV . It computes
the transformation fromJ = 0 (which is found by finding the
minimum of the potential) up through theJ corresponding to a
given value ofH . The basis functionsBj andCj are both taken
to be B-Splines [3] in

√
J, whose knotsti are chosen to be

t0 = · · · = tk−1 = 0 (23)

ti+k = 1

k− 1

i+k−1∑
j=i+1

√
J(i ) i = 0, . . . ,n− k− 1 (24)

tn = · · · = tn+k−1 =
√

J(n−1) (25)

as described on pp. 218-9 of [3]. The code computesqm for
m ≤ M for a given integerM . We do not use the data for
H ′(J(i )) as described above.

We take as an example the potentialV(q) = 1− cosq. We
know the transformation for this potential:

J = 8

π

[
H

2
K

(
H

2

)
− K

(
H

2

)
+ E

(
H

2

)]
(26)

8 =


π
2

{
1− F(sin−1[

√
H/2 sinq/2]|H/2)
K (H/2)

}
p < 0

π
2

{
F(sin−1[

√
H/2 sinq/2]|H/2)
K (H/2) − 1

}
p > 0.

(27)

HereF andK are elliptic integrals [4].
We will check the accuracy of our transformation by comput-

ingq andH on a uniform mesh inJ of 10K points and a uniform
mesh in8 of 10M points (excluding8 = 0 and8 = π ). First,
we computeH(J) at eachJ mesh point, then substitute that
value in Eq. (26) and compare to the originalJ. We give the
maximum value of1J = |J(H(Ji )) − Ji |/Ji in table I. Next,
we takeH(Ji ) andq(Ji ,8 j ) on the grid described and compute
8 using Eq. (27) for each of these values. These results are
then compared to the original8. We record the maximum value



           
M K 1J 18 εS

4 8 2× 10−5 8× 10−4 4× 10−3

4 16 6× 10−7 8× 10−4 3× 10−3

4 32 2× 10−8 8× 10−4 3× 10−3

4 64 8× 10−10 8× 10−4 3× 10−3

4 128 2× 10−11 8× 10−4 3× 10−3

8 8 2× 10−5 8× 10−4 2× 10−2

8 16 6× 10−7 4× 10−5 9× 10−4

8 32 2× 10−8 2× 10−6 3× 10−5

8 64 8× 10−10 8× 10−7 7× 10−6

8 128 2× 10−11 8× 10−7 7× 10−6

16 8 2× 10−5 2× 10−3 1× 10−1

16 16 6× 10−7 2× 10−5 1× 10−3

16 32 2× 10−8 5× 10−7 2× 10−5

16 64 8× 10−10 9× 10−9 5× 10−7

16 128 2× 10−11 5× 10−10 8× 10−9

Table I

Accuracy of the transformation. Quartic B-splines are used
throughout. Maximum value ofH is 1.

of 18 = |8(H(Ji ),q(Ji ,8 j )
) − 8 j | in the second column

of table I. Finally, we check the symplecticity of the resulting
transformation by computing

εS =

∣∣∣∣∣∣∣
∂q

∂8

d H

d J√
2[H − V(q)]

− 1

∣∣∣∣∣∣∣ (28)

for values where neither the square root nor∂q/∂8 is zero. The
maximum value of this is recorded in the third column of table I.

VI. Conclusion
We have described a method for determining a transforma-

tion of a one-dimensional system described by a Hamiltonian of
the form (1) to action-angle variables. A computer program to
implement this method has been written, and gives satisfactory
results regarding convergence.

We note that this method can be applied even to aV(q)which
is only given at a finite number of pointsqi . We simply define
V(q) to be a function which passes through these values. Any
interpolation method may be used to define such aV(q).

This work was motivated by the desire to give a more thor-
ough treatment of the Vlasov equation for longitudinal instabil-
ities, along the lines followed by Oide and Yokoya [5]. These
authors linearize the Vlasov equation about the stationary dis-
tribution derived from the Ha¨ıssinski equation, and then use the
action-angle variablesJ,8 of the “distorted potential well” im-
plied by that distribution. The perturbed distribution function
91(J,8) is represented as a Fourier series in8 with the co-
efficients being step functions inJ. The step function tech-
nique has some deficiencies. It gives at best slow conver-
gence as the steps are refined, and makes it difficult to treat
the Fokker-Planck term,−2δ(∂/∂p)(p91+ ∂91/∂p). We think
that it would be better to use aC2 spline basis for theJ de-
pendence of91. Then the Fokker-Planck term can be han-

dled easily with the help of our Fourier series (6) forq, since
∂/∂p = −(∂q/∂ J)(∂/∂8) + (∂q/∂8)(∂/∂ J). Oide’s rough
treatment of the Fokker-Planck term by a perturbative method
suggests that it is very important in determining thresholds of
instabilities.
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