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Abstract evaluations, with 2 -periodicity in® guaranteed. We also want

For a Vlasov treatment of longitudinal stability under an arbfh ese functions to haye contlnuo_us second_ derivatives n bqth

: . ) . . . variables. These requirements arise from an intended application
trary wake field, with the solution of the ktzinski equation as in solutions of the Vlasov equation with Fokker-Plank term, as
the unperturbed distribution, it is important to have the actiogf q !

angle transformation for the distorted potential well in a conv: iscussed below. A convenient expression of the functions is

nient form. We have written a code that gives the transformation 00
q, p— J, ¢, with q(J, ¢) as a Fourier series i, the Fourier qd, @) = qu(J) cosm® (6)
coefficients and the Hamiltonia (J) being spline functions of m=0
i . . L 399(J, ), ,
J in C# (having continuous second derivatives). p(J, ®) = q(acp H'(J) 7)
I. The Canonical Transformation with gm(J) andH (J) expanded in terms of son@? basis func-
We suppose that the Hamiltonian has the form tions By(J) andCy(J):
2 n(d) = Y GmkBe(J) ®)
H =2+ V@, (1) ;
. . . . o H@D) = ) hC() 9
whereV(q) is a potential well with continuous derivative. We K

discuss only values of the constathitsuch that the motion con- he f la (7 foll f the derivati £ (5) with t
sists entirely of oscillations between two turning points atwhic-ﬂ e formula (7) follows from the derivative of (5) with respec

p = 0. We denote the turning points by andg, with go < ¢z, 2 & if we recall thatH is only a function ofJ when written in

| | f hich eitherV’ v/ : action-anglg coordinates. .
jgfloe)\;\(;eug:ﬁ\ézues dfl for which eitherV'(qo) or V'(qu) is If the series (6), (8), and (9) are truncated at a finite number

of terms, the resulting transformatidn® — g, p will not be
p(g, H) = +/2[H — V()] (2) precisely canonical (i.e., symplectic). A measure of symplectic-
ity is the agreement gb as given in (7) with
wherep > 0 asq moves fromgg to g, andp < 0 as it returns
from g, to gp. The action integral, which extends over a full p(J, @) = +/2[H(J) — V(q(J, ®))]. (10)
period of the motion, is

If pis given by (10), a calculation of the Poisson bracket yields

1 1o
J(H)=—fp(q,H)dq=— p(@. H)dg.  (3) _1dqdH 11

Thanks to ourassumption thét(q;) # 0, there is awell-defined Thus, if p from (7) agrees wittp from (10), we have a canonical
inverse functiorH (J). transformation, sincegf p] = 1. With a moderate number of

Hamilton's equations imply thap = dq/dt. If t = 0 at terms in the series (6), (8), and (9), the transformation can be
d = qu, the timet for displacemend is made to satisfy the canonical condition with sufficient precision

- /q dq " for our purposes.
q P@,H) II. The Primary Integrations

where the integration path is understood to follow all oscillations We first evaluate the integrals (3) and (5) on a regular mesh in
that occur by timet: g — o — qu — --- —> q(t). H: {Hili = 1,..., K}. The turning pointsj(H;) andq:(H;)
Since H depends only onJ, Hamilton’s equations in action- are easily found by a Newton iteration. The fackbi(J(H;)) is
angle variables give® = & + H’(J)t. Choosing®(qg;) = 0, defined at eachby
we have - ©  dq
Y 7 = H'(J(H )
@ H) = HOH) | oy (5) QD o
We wish to find the functiong(J, ®), p(J, ®), andH (J) in  For numerical integration, it is useful to change the variable to
a form that will be convenient for repeated and fast numerical
1 01+0o— 2q
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(12)



The inverse of this transformation is IV. Expressing the Transformation as a Function of

q:q0+Ql+%_qocosu. (14) | | J

2 2 Let g and J©) denote the values af, andJ atH = H;,

Then (5) becomes as determined by the procedure just described. To get the re-
o M 01 — o M) /«u(q) sinu’ du’ quired functions ofl, we invoke the expansions (8) and (9), and
, Hi) = ' [ . determine the coefficients by solving the linear systems
+= V) V2R - V@) y sowing Y
i _ 0]

The integrand is now free of singularities. For a nearly quadratic mo Xk: GmicBie (I (20)

potential,® is close tou. The same change of variable is used

o _ 0
to computel (H;) by (3). HT = Xk: M C (I, (21)
Now u = 7 corresponds t@ = ¢o. We divide the inter-
val [0, ] into N intervals, and integrate by Simpson’s rule [1Jwherei = 1, ..., K. Apossibleimprovementis to use the values

The first and last intervals are treated by an open Newton-CotéH’(J() as determined in (12) for an additional constraint on
formula [1], to avoid taking the limit of the integrand at the encthe functionH (J). One would then use a larger set of basis
points. We evaluate the integrand (15) for upper limiit all of  functionsCy, and augment (21) with the additional equations
the mesh pointg;. The value ofN is increased until the integral

on [0, 7] converges to machine precision. H'D) =3 " hCAD), i=1....,K (22
k
lll. Finding the FourlerlCoefflments This step should make the whole scheme more self-consistent,
After the integrations, the angles!) = ®(q(u;), Hi) are and could be quite worthwhile.
known, with theu; on a large regular mesh & + 1 points.
To evaluate the Fourier coefficierdg for |/m| < M, we search V. Example

through thed ) to find those that are closest to the points one \ye naye written a code which finds the transformation de-

would normally use in a discrete Fourier transform, namely th@yineq for an arbitrary differentiable potential It computes

points 7k the transformation frond = 0 (which is found by finding the
IR k=0,..., M. (16) minimum of the potential) up through thiecorresponding to a

Denoting those angles b, and the corresponding values o iven value ofH. The basis function8; andC; are both taken
] _ i i 3
q(uj) by g®, we solve the following linear equations for the © be B-Splines [3] inv/J, whose knots; are chosen to be

Fourier coefficients: tp = ---=t1=0 (23)
© M 1 ikt

q =qucosmd>k, k=0,....M a7 tk = —Z‘/J(i) i=0,....n—k—1 (24)
m=0 k-1 j=i+1

We solve this system as follows: if we assume that the function ty = o=ty g =V/IOD (25)

g(¢) can be expressed exactly as

M as described on pp. 218-9 of [3]. The code compuatggor
q(¢) = qu cosmeg, (18) m < M for a given integertM. We do not use the data for
m=0 H’(JM) as described above.

then we can writg(®y) in terms of the valueg, = q(rk/M)  We take as an example the potentalq) = 1 — cosq. We

as know the transformation for this potential:
1 P 8[H_(H H H
Q((Dk)z—{XoCOt—SInMCDk J = 2|kl =)=-k(Z = 26
2M 2 72 \2 2)"E\2 (26)
Oy — . .
i cot——" sinM @y — ) (19) 11 FGO l[“KH(/jf'Z’;q/Z]'H/z) p<0 @
= A .
Mi:lx sindy SinM (dy — 7k/M) g | PO RSS2 1t p> 0.
£ ""sin(®y + 7k/M) sin[(by — tk/M)/2]

HereF andK are elliptic integrals [4].
This linear system can then be solved for te the function ~ We will check the accuracy of our transformation by comput-
values at the mesh points. The discrete Fourier transform of thg g andH on a uniform mesh id of 10K points and a uniform
Xk then gives the coefficienty,. The advantage of this is thatmesh in® of 10M points (excludingb = 0 and® = ). First,
the system (19) is very well conditioned if tlig are close to we computeH (J) at eachd mesh point, then substitute that
the mesh points (16); this is why we chose the mesh pdmts value in Eq. (26) and compare to the originhl We give the
as described above. maximum value ofAJ = |J(H(J)) — J|/J in table I. Next,

The system (17) can also be solved as a Vandermonde systemtakeH (J;) andq(J;, ®;) on the grid described and compute
There areD(n?) direct methods for solving such a system whickb using Eq. (27) for each of these values. These results are
should work very well [2]. then compared to the origindl. We record the maximum value



M| K AJ AD €s
4] 8 | 2x10° | 8x10% |4x10°°
4 | 16 | 6x107 | 8x10* | 3x10°°
4 | 32| 2x108% | 8x10* | 3x10°3
4 | 64 | 8x1010| 8x10* | 3x10°3
4 |128|2x101 | 8x10* | 3x10°3
8| 8 | 2x10° | 8x10* | 2x107%
8| 16 | 6x107 | 4x10° | 9x 104
8| 32| 2x108% | 2x10°% | 3x10°°
8| 64 |8x1010| 8x107 | 7x10°°
8 | 128 | 2x 1011 | 8x 107 | 7x 10°®
16| 8 2x10° | 2x10° | 1x 101
16| 16 | 6x107 | 2x10° | 1x10°3
16| 32 | 2x108 | 5x107 | 2x10°°
16| 64 | 8x1010 | 9x10° | 5x 107
16 | 128 | 2x 1011 | 5x 1010 | 8x 10°°
Table |

dled easily with the help of our Fourier series (6) tprsince
a/9p = —(8q/383)(3/0P) + (8q/9P)(9/9J). Oide’s rough
treatment of the Fokker-Planck term by a perturbative method
suggests that it is very important in determining thresholds of
instabilities.
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Accuracy of the transformation. Quartic B-splines are used
throughout. Maximum value dfl is 1.

of A® = [®(H(J),q(J, ®j)) — ®;| in the second column
of table I. Finally, we check the symplecticity of the resulting
transformation by computing

9q dH
eg=|—02dJ 4 (28)

V2[H = V()]

for values where neither the square root 8Qyo® is zero. The
maximum value of this is recorded in the third column of table I.

VI. Conclusion

We have described a method for determining a transforma-
tion of a one-dimensional system described by a Hamiltonian of
the form (1) to action-angle variables. A computer program to
implement this method has been written, and gives satisfactory
results regarding convergence.

We note that this method can be applied even¥a@) which
is only given at a finite number of pointg. We simply define
V (q) to be a function which passes through these values. Any
interpolation method may be used to define suth@).

This work was motivated by the desire to give a more thor-
ough treatment of the Vlasov equation for longitudinal instabil-
ities, along the lines followed by Oide and Yokoya [5]. These
authors linearize the Vlasov equation about the stationary dis-
tribution derived from the Hasinski equation, and then use the
action-angle variableg, ® of the “distorted potential well” im-
plied by that distribution. The perturbed distribution function
W, (J, @) is represented as a Fourier seriestirwith the co-
efficients being step functions id. The step function tech-
nigue has some deficiencies. It gives at best slow conver-
gence as the steps are refined, and makes it difficult to treat
the Fokker-Planck term;25(3/9p) (pW1+ dW1/9p). We think
that it would be better to use @? spline basis for the) de-
pendence of¥;. Then the Fokker-Planck term can be han-



