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Abstract

Analytical outcome of the paper isafew formulae to simplify
practical threshold calculations of transverse coupled-bunch
head-tail instability caused by narrow-band impedancesinapro-
ton synchrotron, which provide a useful quantitative view on
how to keep the instability under control with chromaticity and
cubic-nonlinearity correctors of the magnetic field. The formu-
lae include: (i) the envel opes of head-tail mode formfactors ex-
pressed viaapair of averages over abunch longitudinal distribu-
tion, and (ii) expressions of the effective betatron tune spread in-
troduced by partia spreadsin 2-D functionw, (7, J-) of trans-
verse action variablesin z, z-directions, y = z, 2. The tolera
blevalues of transverse couplingimpedances at parasitic higher-
order £y,,-modes of the UNK accelerating cavities are esti-
mated as an example of application.

I. INTRODUCTION

Let «, z be horizontal and vertical displacements from the or-
bit, v = © — wyt be azimuth in a co-rotating frame, where
© isazimuth around the ring in the laboratory frame, wy isthe
angular velocity of areference particle, ¢ istime. For definite-
ness, only «-oscillationsare studied, the resultsbeing applicable
to z-direction by # — z and v.v. Introduce a 6-D phase-space
of variables (y,y' = dy/dt) withy = 9, z, z. Let the unper-
turbed motion beintegrable, «, z-oscillationsbeing assumed un-
coupled by the optics and treated in a‘smooth’ approximation.
Pass from (y, y') to angle-action veriables (v, Jy,), y = ¥, z, »
with wy(J,) = di,/dt being frequency of nonlinear oscilla-
tions. Let the unperturbed bunch be given by its distribution
function F'( 7y, Jz, J-) normalized to unit.

1. BASIC SET OF EQUATIONS

Beam dipole moment D, (+#,t) and deflecting Lorentz force
eS,y (1, 1) averaged over beam transversedistributionare decom-
posed into >, Dy, egy;k(Q)elkﬁ - ZQt, y = x,z with Q
being the frequency of Fourier transform w.r.t. the co-rotating
frame. Inthelaboratory frame Q2 isseen asw = kwo + 2. Func-
tions f(¢,) of cyclic variables ¢, are decomposed into Fourier
series ), fm, e Yy with m, being the multipoleindex of
directiony = ¢, z, 2.

According to Maxwell’sEgs., thebeam interactswiththe vac-
uum chamber elements and drives horizontal deflecting S-field
with
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where R, is the orbit radius, 5 is beam reduced velocity,
Z,ixy)(w) is the transverse (dipole) coupling impedance. Its

(zy)-matrix nature accounts for the vacuum chamber cross-
section anisotropy, if any. It may result in coupling of coherent
motions along =, z. Here we study the standard, axisymmetric
CaseZlgxy)(w) = Zy(w)lpy, Yy =z, 2.

Consider abeam of average current J, in M < hidentical and
equispaced bunches, 4 isthe main RF harmonic number, h/ M
isan integer. Asit followsfrom the Vlasov’'slinearized Eq., the
transverse BTF is
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where (3;) ~ Rowy/w,(0) is B-function averaged along the

ring, £ isthe total energy of the beam, dxx: isthe Kronecker’s

delta-symbol. The dispersionintegral sY,f,f) (€2) areputdownin
terms of multipole decomposition series
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Here Ak = xo/n — wa(0)/wo; Xo = (ps/wo)(9w=(0)/p)
ischromaticity of thering; n = o — v~ 2, a isorbit compaction
factor, v isrelativistic factor; functions 17, |, (Js) are the coef-

ficients of series which expand a plane wave k(T 9) into

sum over longitudinal multipoles: 3~ - [;;wk(jﬂ)eimv Uy
Treated jointly, Eqs.1,2 yield M eigenvalue problems
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(k, k') =n+ (L,U)M, —co < [,I! < 400. Each of these
stands for one of M norma coupled-bunch modes labeled by,
sy, n = 0,1,...M — 1. R, hasthe dimension Ohm/m of a
transverse impedance,
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Generdly, the characteristic Eq. of coherent oscillationsis

1= X (92), = (n,...), (6)

A¢(€2) being an eigenvalue of Eq.4. On solving thisEq. w.r.t.
2, one arrives a an eigenfrequency of the /-th coherent mode,
the unstable ones having Im$2 > 0.



I1. A SINGLE-MODE APPROACH

To simplify the problem, we make specific the within-bunch
mode subindices m. , m,, my, r that follow the coupled-bunch
modeindex n in ¢ = (n,...), and state conditions under which
such amode can exhibit itself solely.

1. Derivation of EQ.3 tacitly implies m, = 0 which
is due to the ‘smooth’ treatment of the uncoupled betatron
z, z-ostillations.  Herefrom, BTF is diagond: Yk(,f,y)(w) =
Vi) (@)dey, y = o,z (i, excitation by deflecting force €5
would not drive D,,, etc).

2. Put the working point far from 2-nd order SBRs,

2wy (Twy T2) + (Mg — mly)wy (Js) = IMwy, (7)
wherel = 0,1,2,... (ws € wy); —00 < My, m)y < 400.
Hence, resonant frequencies of the dipole modes m, = =+1

would not overlap, and either can betreated separately. For def-
initeness, we take the upper sideband m, = +1, thelower one
providing no extrainformation on beam stability unless a SBR,
Eq.7 isencountered.

3. Take bunches with a small nonlinearity,

6wy | < [dwa| < wy(0) < we(0). (8)

Then, at each sideband w ~ kwo + we(0) + mhws (0) near
instability threshold (Imw — +0) asingle resonant term whose
my = m}, would dominate in the BTF. On dropping the rest,
nonresonant items, the so called approximation of uncoupled
head-tail modes m, isarrived at.

4. Assume F(jﬂ; jxa jz) = Fﬂ(jﬂ) : sz(jxa jz) On ap-
plying to Eq.8, ignore the longitudinal tune spread, w, (Js) =~
wy (0). Then, characteristic Eq.6 factorizesto

1= R Y,(Q) ¢ (Q) 9
with Y (€2) denoting a purely transverse dispersion integral
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Effective (instability driving) impedance ¢, (€2) of mode ¢ =
(n,m,=0, my=1, my, r) isther-th eigenvalue of
CNDe=3,_

- Akk/Zkl(k’/(.Jo + Q)Dkl, (11)
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(k,K)=n+(,INM, —oo < [,l! < 400.

5. Index » that emerges from thiseigenval ue problem specifies
the ‘radia’ (i.e.,, along direction 7y intheplane (1, ¥')) pattern
of the head-tail mode m,. To ensure that only asingle ‘radia’
mode shows itself up, consider anarrow band HOM resonance
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with coupling resistance R, resonant frequency w. and band-
width Aw,, the latter two complying the restrictions

we ElMwy/2, 1=1,2,...; Aw, K Mwy.  (14)
Inthiscase only one (k1 & —w,/wo OF ks S —w, /wo) az-
imuthal harmonic of coupled-bunchmoden wouldfall insidethe

HOM bandwidth. Thus, Eqg.11 reduces to
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the unstable harmonic being k- (the slow betatron wave). As
ReZ '(w) ~ constat w ~ =w,, the point R, /¢i(£2) which
represents HOM's effect a k2 = n + M1 in the threshold map
moves almost paralldl to imaginary axis of the complex plane
(), the distance from the axis being | Ry |/ (Ak,k, Re) (it does
vary insignificantly due to A,;21k2). Thus, the beam stability is
surely guaranteed given

= ApnZ(kwo+Q), r=1, k=k>, (15)

|Rx|/(Akzszc) > Ay (16)

where A, isamaxima ReY -extension of threshold map,

A, = womwax//owm—wx(jx,jz))x (17)
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Being asufficient stability criterion, inequality Eq.16 becomes
anecessary oneinlargeringswithwy < Aw.. UptoHOM band-
width Aw, and wy < w,, onecaninsert ks ~ —(we + wy)/wo
into Ag, %, to transform it into the longitudinal formfactor,

A = / Fy(F9) g~ (To)* Ty = Apur, - (18)
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where k, = w¢/wo + x/nand0 < A < 1. To account
for al head-tail modes available, introduce the envel ope

Ay = max(Agm's ) )

my

(19)

which isafunction of the external parameters only: Fy (7s),
w./wo, X«/1- On adopting the above assumptions, one finaly
arrives at the stability criterion
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with two bunch formfactors Ay, A, |€ft to be estimated.

V. FORMFACTORS
A. Longitudinal Formfactor

According to EQ.8, [dwy| < wy(0) and the law of motion
aong ¥ isjust ¥(Jy, ) ~ /T cos(g + 9o). Hence,

o (T 2 2, (kAO0\/Fo /i)

with .J,(y) denoting Bessel functions of the m-th order,
Ady = AJ(Jgo) being longitudinal half-width of the bunch (in

R, <
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other words, oscillation amplitude along ¥ a a phase-plane tra-
jectory 7y = Jyo). Itimpliesthefollowing reflection properties

Aol = AGmo)s Amo) (g Awg) = AU (koAdG). (22)

Globally, formfactor A’ of the rigid-bunch head-tail mode
my = 0 dominates, envelope Ay, EQ.19 thus coinciding with
Af;” (except for asmall region near |k. Ady| ~ 3-5where mode
|my| = 1 may exhibit itsdf).

Replace J2 (y) in Eq.18 by their quadratic small-argument
and trigonometric large-argument (with 1/2 substituted for
cos?(...)) asymptotes. On integrating, one obtains with accu-
racy sufficient for practical purposes,

1= 5(02) kA0, |k AVo| S 2;
(23)
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Here, numerical factors (/%) < 1and (¢7') > 1 with
6 = ¥/ AW, are, respectively, mean-square and mean-reciproca
reduced half-widthsof a bunch,

o =l

B. Transverse Formfactor
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Let us introduce normalized to unit 1-D transverse distribu-
tions I, (J;) and F,(J.) where, say, Fy.(Jy) IS

0
Take into account the cubic nonlinearity of the magnetic field
which resultsin betatron tune spread
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coefficients at 7, and 7, being controlled with the octupole
COITECtOrsS.

Formfactor A, isamenable to straightforward calculationsin
two particular cases. Indeed, for dw,. /0T, = 0

wo(Tw, J2) ~ we(0) +

0)T +

(0)T-,  (26)
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On the other hand, for 9w, /0.7, = 0 it followsthat
be- _ 0w
Ag m, dwy, = XA (0) J=0, (29)
bxz - ij ‘17115;)6 (Fz(jz)) = ij FZ(O) (30)

Here 7.0, J.0 arethe action variables at the (effective) edge
of the bunch; §w,., dw,. are the partia betatron tune spreads,
both having an arbitrary sign.

Oninserting Eq.26 into Eq.17, one sees that A, iskept intact
by asimultaneousreversal of signsinéw,,. anddw,. .. Therefore,
taking into account the exact Eqs.27—-30 and inflicting no lossto
generality, rewrite A, as
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Dotsin f, show its dependence on details of joint distribution
Fr:(Js, J.). Fortunately, the cal culationsshow that f, israther
insensitiveto dw,,. /dw,, for redistic distributions. With agood
accuracy EQ.31 can be used with f, ~ 1, which plainly puts
down transverse formfactor as areciproca of an effective beta
tron tune spread,
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Eqgs.20, 23, 32 are the sought-for tool for practical estimates
of head-tail instability thresholds.

J=1

V. EXAMPLE OF APPLICATION
Consider the UNK 1-st Stage which is to be equipped

with N = 8 x 2 = 16 conventional copper cavi-
ties, their length being ' = 0.5 m; radius r, = 0.577 m;
surface resistance ¢=* = 1.7.10=® Ohm-m. The figure

shows coupling impedances per one cavity for dipole HOMs
Ei,p. Tolerable values of R, are found with Eqs.20,23,32;
Jo =14A;a =495107% w,/wy = 55.7; Swys/wo =
Swy, /wo = 051072 (B;) = 935 m. Curve A: injection
a £ = 65 GeV with hAdy/m = 0.54 and standard x, ~
+3. Curve B: the same for y, ~ +3 a F = 600 GeV,
hAdy /7 =0.38. CurveC: large negative x,, ~ —30 asrequired
by a dlow extraction scheme.
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Evidently, at least nine of the UNK cavity transverse HOMs
are to be damped with a dedicated system.
More details on the topic can be found in Ref .[1].
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