PRACTICAL CRITERION OF TRANSVERSE COUPLED-BUNCH HEAD-TAIL STABILITY

S. Ivanov and M. Pozdeev, IHEP, Protvino, Moscow Region, 142284, Russia

Abstract

Analytical outcome of the paper is a few formulae to simplify practical threshold calculations of transverse coupled-bunch head-tail instability caused by narrow-band impedances in a proton synchrotron, which provide a useful quantitative view on how to keep the instability under control with chromaticity and cubic-nonlinearity correctors of the magnetic field. The formulae include: (i) the envelopes of head-tail mode formfactors expressed via a pair of averages over a bunch longitudinal distribution, and (ii) expressions of the effective betatron tune spread introduced by partial spreads in 2-D function $\omega_y(\mathcal{J}_x, \mathcal{J}_z)$ of transverse action variables in x, z-directions, y = x, z. The tolerable values of transverse coupling impedances at parasitic higherorder E_{1np} -modes of the UNK accelerating cavities are estimated as an example of application.

I. INTRODUCTION

Let x, z be horizontal and vertical displacements from the orbit, $\vartheta = \Theta - \omega_0 t$ be azimuth in a co-rotating frame, where Θ is azimuth around the ring in the laboratory frame, ω_0 is the angular velocity of a reference particle, t is time. For definiteness, only x-oscillations are studied, the results being applicable to z-direction by $x \rightarrow z$ and v.v. Introduce a 6-D phase-space of variables $(y, y' \equiv dy/dt)$ with $y = \vartheta, x, z$. Let the unperturbed motion be integrable, x, z-oscillations being assumed uncoupled by the optics and treated in a 'smooth' approximation. Pass from (y, y') to angle-action variables $(\psi_y, \mathcal{J}_y), y = \vartheta, x, z$ with $\omega_u(\mathcal{J}_u) = d\psi_u/dt$ being frequency of nonlinear oscillations. Let the unperturbed bunch be given by its distribution function $F(\mathcal{J}_{\vartheta}, \mathcal{J}_x, \mathcal{J}_z)$ normalized to unit.

II. BASIC SET OF EQUATIONS

Beam dipole moment $D_y(\vartheta, t)$ and deflecting Lorentz force $e\overline{S}_{u}(\vartheta,t)$ averaged over beam transverse distribution are decomposed into $\sum_{k} D_{y;k}, e\overline{S}_{y;k}(\Omega) e^{ik\vartheta - i\Omega t}$, y = x, z with Ω being the frequency of Fourier transform w.r.t. the co-rotating frame. In the laboratory frame Ω is seen as $\omega = k\omega_0 + \Omega$. Functions $f(\psi_y)$ of cyclic variables ψ_y are decomposed into Fourier series $\sum_{m_y} f_{m_y} e^{im_y \psi_y}$ with m_y being the multipole index of direction $y = \vartheta, x, z$.

According to Maxwell's Eqs., the beam interacts with the vacuum chamber elements and drives horizontal deflecting S-field with

$$\overline{S}_{x;k}(\Omega) = \frac{i\beta\omega_0}{2\pi R_0} \sum_{y=x,z} Z_k^{(xy)} (k\omega_0 + \Omega) D_{y;k}(\Omega)$$
(1)

where R_0 is the orbit radius, β is beam reduced velocity, $Z_{k}^{(xy)}(\omega)$ is the transverse (dipole) coupling impedance. Its (xy)-matrix nature accounts for the vacuum chamber crosssection anisotropy, if any. It may result in coupling of coherent motions along x, z. Here we study the standard, axisymmetric case $Z_k^{(xy)}(\omega) = Z_k(\omega)\delta_{x,y}, \ y = x, z.$

Consider a beam of average current J_0 in $M \leq h$ identical and equispaced bunches, h is the main RF harmonic number, h/Mis an integer. As it follows from the Vlasov's linearized Eq., the transverse BTF is

$$D_{x;k}(\Omega) = \frac{i\pi R_0 \langle \beta_x \rangle e J_0}{2\omega_0 \beta^2 E} \times$$

$$\times \sum_{k',l=-\infty}^{\infty} \delta_{k-k',lM} Y_{kk'}^{(x)}(\Omega) \overline{S}_{x;k'}(\Omega)$$
(2)

where $\langle \beta_x \rangle \simeq R_0 \omega_0 / \omega_x(0)$ is β -function averaged along the ring, E is the total energy of the beam, $\delta_{kk'}$ is the Kronecker's delta-symbol. The dispersion integrals $Y_{kk'}^{(x)}(\Omega)$ are put down in terms of multipole decomposition series

$$Y_{kk'}^{(x)}(\Omega) = -(i\omega_0/\pi) \sum_{m_x=\pm 1} m_x \sum_{m_\theta=-\infty}^{\infty} \times \quad (3)$$

$$\times \qquad \iiint_{\theta} d\mathcal{J}_{\vartheta} d\mathcal{J}_x d\mathcal{J}_z \frac{\partial F(\mathcal{J}_{\vartheta}, \mathcal{J}_x, \mathcal{J}_z)}{\partial \mathcal{J}_x} \mathcal{J}_x \times$$

$$\times \qquad \frac{I_{m_{\vartheta},k-m_x\Delta k}(\mathcal{J}_{\vartheta}) \ I_{m_{\vartheta},k'-m_x\Delta k}^*(\mathcal{J}_{\vartheta})}{\Omega - m_{\vartheta}\omega_{\vartheta}(\mathcal{J}_{\vartheta}) - m_x\omega_x(\mathcal{J}_x, \mathcal{J}_z)}.$$

Here $\Delta k = \chi_x / \eta - \omega_x(0) / \omega_0$; $\chi_x \equiv (p_s / \omega_0) (\partial \omega_x(0) / \partial p)$ is chromaticity of the ring; $\eta = \alpha - \gamma^{-2}$, α is orbit compaction factor, γ is relativistic factor; functions $I^*_{m,\vartheta,k}(\mathcal{J}_\vartheta)$ are the coefficients of series which expand a plane wave $e^{ik\vartheta(\mathcal{J}_{\vartheta}, \psi_{\vartheta})}$ into sum over longitudinal multipoles: $\sum_{m_{\vartheta}} I^*_{m_{\vartheta}k}(\mathcal{J}_{\vartheta}) e^{im_{\vartheta}\psi_{\vartheta}}$. Treated jointly, Eqs.1,2 yield *M* eigenvalue problems

$$\lambda(\Omega)D_{x;k} = R_x^{-1} \sum_{l'=-\infty}^{\infty} Y_{kk'}^{(x)}(\Omega)Z_{k'}(k'\omega_0 + \Omega)D_{x;k'}, \quad (4)$$

 $(k, k') = n + (l, l') M, -\infty < l, l' < +\infty$. Each of these stands for one of M normal coupled-bunch modes labeled by, say, $n = 0, 1, \dots, M - 1$. R_x has the dimension Ohm/m of a transverse impedance,

$$R_x = -\left(4\beta E\right) / \left(e J_0 \langle \beta_x \rangle\right) < 0.$$
(5)

Generally, the characteristic Eq. of coherent oscillations is

$$1 = \lambda_{\ell}(\Omega), \qquad \ell = (n, \ldots), \tag{6}$$

 $\lambda_{\ell}(\Omega)$ being an eigenvalue of Eq.4. On solving this Eq. w.r.t. Ω , one arrives at an eigenfrequency of the ℓ -th coherent mode, the unstable ones having $\text{Im}\Omega > 0$.

III. A SINGLE-MODE APPROACH

To simplify the problem, we make specific the within-bunch mode subindices m_z, m_x, m_ϑ, r that follow the coupled-bunch mode index n in $\ell = (n, ...)$, and state conditions under which such a mode can exhibit itself solely.

1. Derivation of Eq.3 tacitly implies $m_z = 0$ which is due to the 'smooth' treatment of the uncoupled betatron x, z-oscillations. Herefrom, BTF is diagonal: $Y_{kk'}^{(xy)}(\omega) =$ $Y_{kk'}^{(x)}(\omega)\delta_{x,y}, y = x, z$ (i.e., excitation by deflecting force $e\overline{S}_z$ would not drive D_x , etc).

2. Put the working point far from 2-nd order SBRs,

$$2\omega_x(\mathcal{J}_x,\mathcal{J}_z) + (m_\vartheta - m'_\vartheta)\omega_\vartheta(\mathcal{J}_\vartheta) = lM\omega_0, \qquad (7)$$

where $l = 0, 1, 2, ..., (\omega_{\vartheta} \ll \omega_x); -\infty < m_{\vartheta}, m'_{\vartheta} < +\infty$. Hence, resonant frequencies of the dipole modes $m_x = \pm 1$ would not overlap, and either can be treated separately. For definiteness, we take the upper sideband $m_x = +1$, the lower one providing no extra information on beam stability unless a SBR, Eq.7 is encountered.

3. Take bunches with a small nonlinearity,

$$|\delta\omega_{\vartheta}| \ll |\delta\omega_{x}| < \omega_{\vartheta}(0) \ll \omega_{x}(0).$$
(8)

Then, at each sideband $\omega \simeq k\omega_0 + \omega_x(0) + m'_{\vartheta}\omega_{\vartheta}(0)$ near instability threshold (Im $\omega \to +0$) a single resonant term whose $m_{\vartheta} = m'_{\vartheta}$ would dominate in the BTF. On dropping the rest, nonresonant items, the so called approximation of uncoupled head-tail modes m_{ϑ} is arrived at.

4. Assume $F(\mathcal{J}_{\vartheta}, \mathcal{J}_x, \mathcal{J}_z) = F_{\vartheta}(\mathcal{J}_{\vartheta}) \cdot F_{xz}(\mathcal{J}_x, \mathcal{J}_z)$. On applying to Eq.8, ignore the longitudinal tune spread, $\omega_{\vartheta}(\mathcal{J}_{\vartheta}) \simeq \omega_{\vartheta}(0)$. Then, characteristic Eq.6 factorizes to

$$1 = R_x^{-1} Y_x(\Omega) \zeta_r(\Omega)$$
(9)

with $Y_x(\Omega)$ denoting a purely transverse dispersion integral

$$Y_{x}(\Omega) = -(i\omega_{0}/\pi) \iint_{0}^{\infty} d\mathcal{J}_{x} d\mathcal{J}_{z} \frac{\partial F_{xz}(\mathcal{J}_{x},\mathcal{J}_{z})}{\partial \mathcal{J}_{x}} \mathcal{J}_{x} \times \times 1/((\Omega - m_{\vartheta}\omega_{\vartheta}(0)) - \omega_{x}(\mathcal{J}_{x},\mathcal{J}_{z})).$$
(10)

Effective (instability driving) impedance $\zeta_r(\Omega)$ of mode $\ell = (n, m_z=0, m_x=1, m_\vartheta, r)$ is the *r*-th eigenvalue of

$$\zeta(\Omega)D_k = \sum_{l'=-\infty}^{\infty} A_{kk'} Z_{k'} (k'\omega_0 + \Omega)D_{k'}, \quad (11)$$

$$A_{kk'} = \int_{0}^{\infty} F_{\vartheta}(\mathcal{J}_{\vartheta}) I_{m_{\vartheta},k-\Delta k}(\mathcal{J}_{\vartheta}) I_{m_{\vartheta},k'-\Delta k}^{*}(\mathcal{J}_{\vartheta}) d\mathcal{J}_{\vartheta}, \quad (12)$$

 $(k, k') = n + (l, l')M, -\infty < l, l' < +\infty.$

5. Index *r* that emerges from this eigenvalue problem specifies the 'radial' (i.e., along direction \mathcal{J}_{ϑ} in the plane (ϑ, ϑ')) pattern of the head-tail mode m_{ϑ} . To ensure that only a single 'radial' mode shows itself up, consider a narrow band HOM resonance

$$Z_k(\omega) = \frac{\omega}{\omega_{\varsigma}} R_{\varsigma} \left(1 - i \frac{\omega^2 - \omega_{\varsigma}^2}{2\omega \Delta \omega_{\varsigma}} \right)^{-1}$$
(13)

with coupling resistance R_{ς} , resonant frequency ω_{ς} and bandwidth $\Delta \omega_{\varsigma}$, the latter two complying the restrictions

$$\omega_{\varsigma} \not\simeq lM\omega_0/2, \quad l = 1, 2, \dots; \qquad \Delta\omega_{\varsigma} \ll M\omega_0.$$
 (14)

In this case only one $(k_1 \gtrsim -\omega_x/\omega_0 \text{ or } k_2 \lesssim -\omega_x/\omega_0)$ azimuthal harmonic of coupled-bunch mode *n* would fall inside the HOM bandwidth. Thus, Eq.11 reduces to

$$\zeta_r(\Omega) = A_{kk} Z_k (k\omega_0 + \Omega), \quad r = 1, \quad k = k_{1,2},$$
(15)

the unstable harmonic being k_2 (the slow betatron wave). As $\operatorname{Re}Z_k^{-1}(\omega) \simeq \operatorname{const} \operatorname{at} \omega \simeq \pm \omega_{\varsigma}$, the point $R_x/\zeta_1(\Omega)$ which represents HOM's effect at k2 = n + Ml in the threshold map moves almost parallel to imaginary axis of the complex plane (Y), the distance from the axis being $|R_x|/(A_{k_2k_2}R_{\varsigma})$ (it does vary insignificantly due to $A_{k_2k_2}^{-1}$). Thus, the beam stability is surely guaranteed given

$$|R_x|/(A_{k_2k_2}R_{\varsigma}) > \Lambda_x \tag{16}$$

where Λ_x is a maximal ReY-extension of threshold map,

$$\Lambda_{x} = \omega_{0} \max_{\omega} \iint_{0}^{\infty} \delta\left(\omega - \omega_{x}(\mathcal{J}_{x}, \mathcal{J}_{z})\right) \times (17)$$

$$\times (-\partial F_{xz}(\mathcal{J}_{x}, \mathcal{J}_{z})/\partial \mathcal{J}_{x}) \mathcal{J}_{x} d\mathcal{J}_{x} d\mathcal{J}_{z}.$$

Being a sufficient stability criterion, inequality Eq.16 becomes a necessary one in large rings with $\omega_0 \lesssim \Delta \omega_{\varsigma}$. Up to HOM bandwidth $\Delta \omega_{\varsigma}$ and $\omega_{\vartheta} \ll \omega_x$, one can insert $k_2 \simeq -(\omega_{\varsigma} + \omega_x)/\omega_0$ into $A_{k_2k_2}$ to transform it into the longitudinal formfactor,

$$\Lambda_{\vartheta}^{(m_{\vartheta})} = \int_{0}^{\infty} F_{\vartheta}(\mathcal{J}_{\vartheta}) \left| I_{m_{\vartheta}, -k_{\star}}(\mathcal{J}_{\vartheta}) \right|^{2} d\mathcal{J}_{\vartheta} \simeq A_{k_{2}k_{2}}$$
(18)

where $k_* = \omega_{\varsigma}/\omega_0 + \chi_x/\eta$ and $0 < \Lambda_{\vartheta}^{(m_{\vartheta})} \le 1$. To account for all head-tail modes available, introduce the envelope

$$\Lambda_{\vartheta} = \max_{m_{\vartheta}} (\Lambda_{\vartheta}^{(m_{\vartheta})}) \tag{19}$$

which is a function of the external parameters only: $F_{\vartheta}(\mathcal{J}_{\vartheta})$, $\omega_{\varsigma}/\omega_0$, χ_x/η . On adopting the above assumptions, one finally arrives at the stability criterion

$$R_{\varsigma} \leq \frac{|R_x|}{\Lambda_{\vartheta} \Lambda_x} = \frac{1}{\Lambda_{\vartheta} \Lambda_x} \times \frac{4 \,\beta E}{e J_0 \langle \beta_x \rangle} \tag{20}$$

with two bunch formfactors Λ_{ϑ} , Λ_x left to be estimated.

IV. FORMFACTORS

A. Longitudinal Formfactor

According to Eq.8, $|\delta\omega_{\vartheta}| \ll \omega_{\vartheta}(0)$ and the law of motion along ϑ is just $\vartheta(\mathcal{J}_{\vartheta}, \psi_{\vartheta}) \simeq \sqrt{\mathcal{J}} \cos(\psi_{\vartheta} + \psi_{\vartheta 0})$. Hence,

$$|I_{m_{\vartheta}k}(\mathcal{J}_{\vartheta})|^{2} \simeq J_{m_{\vartheta}}^{2} \left(k \Delta \vartheta_{0} \sqrt{\mathcal{J}_{\vartheta}/\mathcal{J}_{\vartheta 0}} \right)$$
(21)

with $J_m(y)$ denoting Bessel functions of the *m*-th order, $\Delta \vartheta_0 = \Delta \vartheta(\mathcal{J}_{\vartheta 0})$ being longitudinal half-width of the bunch (in other words, oscillation amplitude along ϑ at a phase-plane trajectory $\mathcal{J}_{\vartheta} = \mathcal{J}_{\vartheta 0}$). It implies the following reflection properties

$$\Lambda_{\vartheta}^{(-m_{\vartheta})} = \Lambda_{\vartheta}^{(m_{\vartheta})}; \ \Lambda_{\vartheta}^{(m_{\vartheta})}(-k_*\Delta\vartheta_0) = \Lambda_{\vartheta}^{(m_{\vartheta})}(k_*\Delta\vartheta_0).$$
(22)

Globally, formfactor $\Lambda_{\vartheta}^{(0)}$ of the rigid-bunch head-tail mode $m_{\vartheta} = 0$ dominates, envelope Λ_{ϑ} , Eq.19 thus coinciding with $\Lambda_{\vartheta}^{(0)}$ (except for a small region near $|k_* \Delta \vartheta_0| \simeq 3-5$ where mode $|m_{\vartheta}| = 1$ may exhibit itself).

Replace $J_m^2(y)$ in Eq.18 by their quadratic small-argument and trigonometric large-argument (with 1/2 substituted for $\cos^2(...)$) asymptotes. On integrating, one obtains with accuracy sufficient for practical purposes,

$$\Lambda_{\vartheta} \simeq \Lambda_{\vartheta}^{(0)} \simeq \begin{cases} 1 - \frac{1}{2} \left\langle \theta^2 \right\rangle |k_* \Delta \vartheta_0|^2, & |k_* \Delta \vartheta_0| \lesssim 2; \\ \frac{1}{\pi} \left\langle \theta^{-1} \right\rangle |k_* \Delta \vartheta_0|^{-1}, & |k_* \Delta \vartheta_0| \gtrsim 3. \end{cases}$$
(23)

Here, numerical factors $\langle \theta^2 \rangle \leq 1$ and $\langle \theta^{-1} \rangle \geq 1$ with $\theta = \vartheta / \Delta \vartheta_0$ are, respectively, mean-square and mean-reciprocal reduced half-widths of a bunch,

B. Transverse Formfactor

Let us introduce normalized to unit 1-D transverse distributions $F_x(\mathcal{J}_x)$ and $F_z(\mathcal{J}_z)$ where, say, $F_x(\mathcal{J}_x)$ is

$$F_x(\mathcal{J}_x) = \int_0^\infty F_{xz}(\mathcal{J}_x, \mathcal{J}_z) \, d\mathcal{J}_z \,. \tag{25}$$

Take into account the cubic nonlinearity of the magnetic field which results in betatron tune spread

$$\omega_x(\mathcal{J}_x, \mathcal{J}_z) \simeq \omega_x(0) + \frac{\partial \omega_x}{\partial \mathcal{J}_x}(0)\mathcal{J}_x + \frac{\partial \omega_x}{\partial \mathcal{J}_z}(0)\mathcal{J}_z, \qquad (26)$$

coefficients at \mathcal{J}_x and \mathcal{J}_z being controlled with the octupole correctors.

Formfactor Λ_x is amenable to straightforward calculations in two particular cases. Indeed, for $\partial \omega_x / \partial \mathcal{J}_z = 0$

$$\Lambda_x = \frac{b_{xx}}{|\delta\omega_{xx}/\omega_0|}, \quad \delta\omega_{xx} = \frac{\partial\omega_x}{\partial\mathcal{J}_x}(0) \,\mathcal{J}_{x0}, \qquad (27)$$

$$b_{xx} = \mathcal{J}_{x0} \max_{\mathcal{J}_x > 0} \left(\mathcal{J}_x \left(-\partial F_x(\mathcal{J}_x) / \partial \mathcal{J}_x \right) \right).$$
(28)

On the other hand, for $\partial \omega_x / \partial \mathcal{J}_x = 0$ it follows that

$$\Lambda_x = \frac{b_{xz}}{|\delta\omega_{xz}/\omega_0|}, \quad \delta\omega_{xz} = \frac{\partial\omega_x}{\partial\mathcal{J}_z}(0) \mathcal{J}_{z0}, \qquad (29)$$

$$b_{xz} = \mathcal{J}_{z0} \max_{\mathcal{J}_z \ge 0} \left(F_z(\mathcal{J}_z) \right) = \mathcal{J}_{z0} F_z(0).$$
(30)

Here \mathcal{J}_{x0} , \mathcal{J}_{z0} are the action variables at the (effective) edge of the bunch; $\delta \omega_{xx}$, $\delta \omega_{xz}$ are the partial betatron tune spreads, both having an arbitrary sign.

On inserting Eq.26 into Eq.17, one sees that Λ_x is kept intact by a simultaneous reversal of signs in $\delta\omega_{xx}$ and $\delta\omega_{xz}$. Therefore, taking into account the exact Eqs.27–30 and inflicting no loss to generality, rewrite Λ_x as

$$\Lambda_x = f_x \left(\frac{\delta \omega_{xx}}{\delta \omega_{xz}}; \ldots \right) \times \left(\left(\frac{\delta \omega_{xx}}{\omega_0 b_{xx}} \right)^2 + \left(\frac{\delta \omega_{xz}}{\omega_0 b_{xz}} \right)^2 \right)^{-1/2},$$
(31)

 $f_x(\pm\infty;\ldots) = f_x(0;\ldots) = 1.$

Dots in f_x show its dependence on details of joint distribution $F_{xz}(\mathcal{J}_x, \mathcal{J}_z)$. Fortunately, the calculations show that f_x is rather insensitive to $\delta \omega_{xx}/\delta \omega_{xz}$ for realistic distributions. With a good accuracy Eq.31 can be used with $f_x \simeq 1$, which plainly puts down transverse formfactor as a reciprocal of an effective betatron tune spread,

$$\Lambda_x \simeq \left(\left(\frac{\delta \omega_{xx}}{\omega_0 b_{xx}} \right)^2 + \left(\frac{\delta \omega_{xz}}{\omega_0 b_{xz}} \right)^2 \right)^{-1/2}.$$
 (32)

Eqs.20, 23, 32 are the sought-for tool for practical estimates of head-tail instability thresholds.

V. EXAMPLE OF APPLICATION

Consider the UNK 1-st Stage which is to be equipped with $N = 8 \times 2 = 16$ conventional copper cavities, their length being L = 0.5 m; radius $r_0 = 0.577$ m; surface resistance $\sigma^{-1} = 1.7 \cdot 10^{-8}$ Ohm·m. The figure shows coupling impedances per one cavity for dipole HOMs E_{1np} . Tolerable values of R_{ς} are found with Eqs.20,23,32; $J_0 = 1.4$ A; $\alpha = 4.95 \cdot 10^{-4}$; $\omega_x/\omega_0 = 55.7$; $\delta \omega_{xx}/\omega_0 = \delta \omega_{xz}/\omega_0 = 0.5 \cdot 10^{-2}$; $\langle \beta_x \rangle = 93.5$ m. Curve A: injection at E = 65 GeV with $h \Delta \vartheta_0 / \pi = 0.54$ and standard $\chi_x \simeq$ +3. Curve B: the same for $\chi_x \simeq +3$ at E = 600 GeV, $h \Delta \vartheta_0 / \pi = 0.38$. Curve C: large negative $\chi_x \simeq -30$ as required by a slow extraction scheme.

Evidently, at least nine of the UNK cavity transverse HOMs are to be damped with a dedicated system. More details on the topic can be found in Ref.[1].

References

[1] S. Ivanov, M. Pozdeev, IHEP Preprint 94–110, Protvino, 1994 (in Russian).