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Abstract

An analytic expression for the non-resonant longitudinal cou-
pling impedance in a toroidal beam pipe with circular cross sec-
tion is derived using a perturbation treatment carried out in a
local orthogonal coordinate system. z

|. INTRODUCTION ¢

In this paper, the topic of coupling impedances and beam-
induced forces in a toroidal beam pipe is revisited. In straight,
smooth accelerator beam pipe configurations, the space charge
forces on a charged test particle due to beam-induced electric
and magnetic fields are subject to a near perfect cancellation s=R ©
in the ultra-relativistic limit. It is well known that in toroidal Figure 1. Local coordinate systefn, ¢, §) for toroidal beam
geometries the cancellation is imperfect, resulting in residualbe with circular cross section.

“energy-independent” longitudinal and transverse forces which
can impact the accelerator performance. Whereas the present- Il. PERTURBATIVE SOLUTION OF
day designs of high-energy hadron acceleratoligdens are MAXWELL' S EQUATIONS

based on beam pipes with circular cross section, essentially alf o «ocal” orthogonal curvilinear coordinate systemp, 8

theoretical studies assume rectangular geometries, the nOtﬁBlﬁropriate to the toroidal beam pipe geometry is defined in
exception being the report by ZotteThe expressions here Pr€terms of the Cartesian coordinateg), =

sented are intended to amend this deficiency.

The primary objective of this paper is the derivation of an ex- v = (R+rcosp)cost
pression for the residual longitudingl/n of a toroidal beam y = —(R+rcosp)sind
pipe with circular cross section, withrepresenting the beam : = rsing 1)

pipe radius andR the curvature radius of the central arc as

shown in Fig. 1. The results are obtained via the perturbationAssuming time harmonic fields of the general form
method developed by Joug#idor the analysis of the electro- F (r, ¢)e™" /" withw = vv andv = n/R (in natural units
magnetic wave propagation in curved waveguides, which \herec =1, p, = 1) one can write Maxwell's equations in the
cently has been successfully applied to the derivation of egource free regions as

pressions for the longitudinal coupling impedance in toroidal 89Es
beam pipes with rectangular cross secfidriJsing the Serret- or +jvés, = —jwgi,
Frenet frame, an appropriate “local” orthogonal coordinate sys- 09Es
tem (r, ¢, #) can be errected around the central arc of the g€ + o = JwgH,
torus. This choice is superior to the use of toroidal coordinates, P "
X ) ; r€, 0 .
since the local coordinate system reduces to the usual circular- — = —jwhy
cylinder coordinates, ¢, s = R as required for the pertur- ror 10y
bation treatment of the problem. Since the residual longitudinal OgHs T ivH, = jwgE
coupling impedance of an on-axis beam must be independent of rde v "
the direction of curvature, an expansion to second ordéy it e dgHe . <
is required. Itis known from previous studies that the residual JVite & ar . IWIee
coupling impedance does not exhibit a longarithmic divergence, oty oM, . < 5
if the transverse beam size is reduced to zero. Consequently, the ror rdp Jwce (2)

study can be limited to filamentary beams. Since wall losses are

themselves a small perturbation, they can be ignored in derivif{ hg =1+ (r/R)cose. _ _ _
the perturbation results due to the curvature. erturbative solutions can be found by expanding the fields in

inverse powers of the curvature radius, or explicitely
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The resulting expressions for Maxwell's equations to first or- W T weosp— 4+ wvrcospll,  (6)
derin R~! are given as follows " "
The internal consistency of the results can be checked by test-
1 869 0 i H : ; e — 0
28 4 vey 4+ why = ———(cos pEy) — wr cos i, ing for a divergence free solution using div= 0:
r Jp ’ " !
ey 4 ore, + 3& +vreg = —rcose| B+ orE,
ve, + B —wh, = —COSQDE(TE‘Q)—I—(.WCOS@H@ Or P 9 = Y o
0 Je Jdcos pF,
_ _ T - Sl e 7
ar(rew) i wrhg =0 B (7
l%-l-l/hw—wer :_i(cosgng)—i—wrcosgoEr and divi = 0:
r Op 0
Ohg 0 Orhr + % +wvrhg = —rcos H, + orH,
vhy + B +we, = —cos goa(ng) —wrcospl, Or dyp b= L ar
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Decoupling Maxwell's equations and reducing them to twolll. THE CURVATURE-INDUCED RESIDUAL
independent partial differential equations in the azimuthal com- COUPLING IMPEDANCE

ponentsey, and hy can be achieved by introducing complex

transverse fields ar_1d dlfferennal op_erat?)rs. ) ... step towards finding the curvature-induced longitudinal cou-
After some mampulatlo_ns, one finds the_lndependent d'ﬁeﬂﬁng impedance. In order to prevent a logarithmic divergence
ential equations for the azimuthal perturbations of the result, the beam must be given a finite transverse size.

First order perturbation results iR—* are the required first

Ares — w2y = —Ag(rcosply) Solvi_ng the case of a tubular beam I_ocated atthe radz'nmids
P the divergence. The tubular beam is assumed to travel i the
9 {r*cosp(vE, +wH,)} direction with velocityv and has the current density
ror
d . 1 —jinf _jwt
—1—% {cos p(VE, —wH,)} ip = %5(7“ —ple "%l 9
Arhs — k*hg = —Ag(rcospHy) Perturbative solutions to Maxwell's equations are found as de-

scribed above separately for inngr < p) and outer region
(p < r < b) and by field matching at = p, while impos-
ing Ampere's law or¥{, and satisfying the boundary condition
atr = b, assuming lossless walls.

The field components in the limit of filamentafy — 0) and
with “2_ =v? —w® = (1 —v*)v* = (v/7)” and the transverse ultra-relativistic(v — 1) beams required in the derivation &f
Laplacian operator to second order can be written as
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The solution is uniquely determined by imposing boundary’s
and continuity conditions. Having determinegd and hy4, the

remaining transverse components can be obtained as follows{w = % + %hwl cos ¢ + % . (10)
E .
kle, = —y%ﬁ — Vcosgoag  +w?rcos ek, with
T T
I b
h _
—iaa—e—waicosgoHe—i—wyrcosgon €1 = _ﬁ’”ln; (11)
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together with the boundary conditions on the beam pipe
wall (eg2),=p = 0 and, replacing the matching condition,
(Oega/0r),_o = 0.

The solution is found to be
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from which follow the expression for the residual longitudinal
coupling impedance seen by a filamentary beam in the ultra-
relativistic casey — oo (7, = cpo, in Sl UNIts)

z %7, T 5y
=~ =i (1—§yb) (14)

The full second-order expression for the curvature-induced
longitudinal coupling impedance and mathematical details of
its derivation can be found in a journal pafewhere the
impedance in the long-wavelength limit is given as

Z b 7
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with 8 = v/c.



