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Abstract

An analytic expression for the non-resonant longitudinal cou-
pling impedance in a toroidal beam pipe with circular cross sec-
tion is derived using a perturbation treatment carried out in a
local orthogonal coordinate system.

I. INTRODUCTION

In this paper, the topic of coupling impedances and beam-
induced forces in a toroidal beam pipe is revisited. In straight,
smooth accelerator beam pipe configurations, the space charge
forces on a charged test particle due to beam-induced electric
and magnetic fields are subject to a near perfect cancellation
in the ultra-relativistic limit. It is well known that in toroidal
geometries the cancellation is imperfect, resulting in residual,
“energy-independent” longitudinal and transverse forces which
can impact the accelerator performance. Whereas the present-
day designs of high-energy hadron accelerators/colliders are
based on beam pipes with circular cross section, essentially all
theoretical studies assume rectangular geometries, the notable
exception being the report by Zotter.1 The expressions here pre-
sented are intended to amend this deficiency.

The primary objective of this paper is the derivation of an ex-
pression for the residual longitudinalZ=n of a toroidal beam
pipe with circular cross section, withb representing the beam
pipe radius andR the curvature radius of the central arc as
shown in Fig. 1. The results are obtained via the perturbation
method developed by Jouguet2 for the analysis of the electro-
magnetic wave propagation in curved waveguides, which re-
cently has been successfully applied to the derivation of ex-
pressions for the longitudinal coupling impedance in toroidal
beam pipes with rectangular cross section.3;4 Using the Serret-
Frenet frame, an appropriate “local” orthogonal coordinate sys-
tem (r; '; �) can be errected around the central arc of the
torus. This choice is superior to the use of toroidal coordinates,
since the local coordinate system reduces to the usual circular-
cylinder coordinatesr; '; s = R� as required for the pertur-
bation treatment of the problem. Since the residual longitudinal
coupling impedance of an on-axis beam must be independent of
the direction of curvature, an expansion to second order in1=R
is required. It is known from previous studies that the residual
coupling impedance does not exhibit a longarithmic divergence,
if the transverse beam size is reduced to zero. Consequently, the
study can be limited to filamentary beams. Since wall losses are
themselves a small perturbation, they can be ignored in deriving
the perturbation results due to the curvature.
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Figure 1. Local coordinate system(r; '; �) for toroidal beam
tube with circular cross section.

II. PERTURBATIVE SOLUTION OF
MAXWELL' S EQUATIONS

The “local” orthogonal curvilinear coordinate systemr; '; �
appropriate to the toroidal beam pipe geometry is defined in
terms of the Cartesian coordinatesx; y; z

x = (R+ r cos') cos �

y = �(R + r cos') sin �

z = r sin' (1)

Assuming time harmonic fields of the general form
F(r; ')e�jn�ej!t with ! = v� and� = n=R (in natural units
wherec = 1; �o = 1) one can write Maxwell's equations in the
source free regions as
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with g = 1 + (r=R) cos'.
Perturbative solutions can be found by expanding the fields in

inverse powers of the curvature radius, or explicitely
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The resulting expressions for Maxwell's equations to first or-
der inR�1 are given as follows
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Decoupling Maxwell's equations and reducing them to two
independent partial differential equations in the azimuthal com-
ponentse� and h� can be achieved by introducing complex
transverse fields and differential operators.5

After some manipulations, one finds the independent differ-
ential equations for the azimuthal perturbations
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with �2 = �2 � !2 = (1 � v2)�2 = (�=
)2 and the transverse
Laplacian operator
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The solution is uniquely determined by imposing boundary
and continuity conditions. Having determinede� andh�, the
remaining transverse components can be obtained as follows
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The internal consistency of the results can be checked by test-
ing for a divergence free solution using div~E = 0:
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and div ~H = 0:
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III. THE CURVATURE-INDUCED RESIDUAL
COUPLING IMPEDANCE

First order perturbation results inR�1 are the required first
step towards finding the curvature-induced longitudinal cou-
pling impedance. In order to prevent a logarithmic divergence
of the result, the beam must be given a finite transverse size.
Solving the case of a tubular beam located at the radius� avoids
the divergence. The tubular beam is assumed to travel in the�

direction with velocityv and has the current density
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I
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Perturbative solutions to Maxwell's equations are found as de-
scribed above separately for inner(r < �) and outer region
(� < r < b) and by field matching atr = �, while impos-
ing Amp�ere's law onH' and satisfying the boundary condition
at r = b, assuming lossless walls.

The field components in the limit of filamentary(�! 0) and
ultra-relativistic(v ! 1) beams required in the derivation ofE�
to second order can be written as
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The second order field perturbations of an on-axis filamentary
beam are excited by first-order perturbations with pure dipole,
i.e. 1'-dependence. The factorcos2' = 1

2
+ 1

2
cos 2' in the

forcing term implies that the second order fields have only' in-
dependent and quadrupole, i.e.2', dependent terms. Only the
'-independent terme�2 leads to an on-axis electric field com-
ponent in�-direction which is responsible for the residual cou-
pling impedance. The differential equation for the relevant'-
independente�2 component thus reduces in the ultra-relativistic
limit, i.e. � = 0, to
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together with the boundary conditions on the beam pipe
wall (e�2)r=b = 0 and, replacing the matching condition,
(@e�2=@r)r=0 = 0.

The solution is found to be
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from which follow the expression for the residual longitudinal
coupling impedance seen by a filamentary beam in the ultra-
relativistic case,
 !1 (Zo = c�o, in SI units)
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The full second-order expression for the curvature-induced
longitudinal coupling impedance and mathematical details of
its derivation can be found in a journal paper,6 where the
impedance in the long-wavelength limit is given as
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with � = v=c.
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