# IMPEDANCE MATRIX - AN UNIFIED APPROACH TO LONGITUDINAL COUPLED-BUNCH FEEDBACKS IN A SYNCHROTRON 

S. Ivanov, Institute for High Energy Physics, Protvino, Moscow Region, 142284, Russia


#### Abstract

Characteristic Eq. of coupled-bunch motion of beam governed by a feedback (FB) is given to find FB's stabilizing effect against coherent instabilities or, say, injection error damping rates. Quite a general FB's schematics is involved: (i) it has two paths, the in-phase and quadrature (or amplitude and phase in a small-signal approach), with unequal gains; (ii) may employ distinct RF-bands to pick-up beam data and feed correction back to the beam. To account for cross-talk between various field and beam current harmonics inflicted by frequency down- and upmixing, an impedance matrix (with, at most, three non-trivial elements per row) is introduced as a natural concept to gain insight into `FB \& beam' dynamics. The important class of FBs to counteract heavy beam loading of accelerating cavities is included into analysis as a particular case.


## I. INTRODUCTION

Let $\vartheta=\Theta-\omega_{0} t$ be azimuth in a co-rotating frame, where $\Theta$ is azimuth around the ring in the laboratory frame, $\omega_{0}$ is the angular velocity of a reference particle, $t$ is time. The beam current $J(\vartheta, t)$ and longitudinal electric field $E(\vartheta, t)$ are decomposed into $\sum_{k} J, E_{k}(\Omega) \mathrm{e}^{i k \vartheta-i \Omega t}$ with $\Omega$ being the frequency of Fourier transform w.r.t. the co-rotating frame. In the laboratory frame $\Omega$ is seen as $\omega=k \omega_{0}+\Omega$.

Interacting with passive components inside the vacuum chamber, the beam drives $E$-field with amplitude

$$
\begin{equation*}
E_{k}(\Omega)=-L^{-1} Z_{k k}(\omega) J_{k}(\Omega), \quad \omega=k \omega_{0}+\Omega \tag{1}
\end{equation*}
$$

where $L$ is the orbit length, $Z_{k k}(\omega)$, $\operatorname{Re} Z_{k k}(\omega) \geq 0$ is the standard longitudinal impedance. Its main-diagonal element is cut from the entire matrix $Z_{k k^{\prime}}(\omega)$ (it describes the lumped nature of the beam environment) due to a narrow-band response appropriate to, as a matter of fact, slowly perturbed bunched beams,

$$
\begin{equation*}
J_{k^{\prime}}\left(\left(k-k^{\prime}\right) \omega_{0}+\Omega\right) \simeq J_{k}(\Omega) \delta_{k k^{\prime}}, \quad|\Omega| \ll \omega_{0}, \tag{2}
\end{equation*}
$$

with $\delta_{k k^{\prime}}$ being the Kronecker's delta-symbol.

## II. FEEDBACK

## A. Circuitry with $P U \neq A D$

To simplify the matters, let a Pick-Up unit and an Acting Device of the FB in question be cavity-like resonant objects which excite longitudinal $E$-field

$$
\begin{equation*}
E^{(a)}(\Theta, t)=L^{-1} G^{(a)}(\Theta) u_{a}(t) ; \quad a=\mathrm{PU}, \mathrm{AD}, \tag{3}
\end{equation*}
$$

where $u_{a}(t)$ is voltage across the gap, $G^{(a)}(\Theta)$ specifies the field localization and is normalized as $\int_{0}^{2 \pi}\left|G^{(a)}(\Theta)\right| d \Theta=2 \pi$. Its

decomposition into $\sum_{k} G_{k}^{(a)} \mathrm{e}^{i k \Theta}$ provides $G_{k}^{(a)}$, the complex transit-time factors at $\omega=k \omega_{0}$ with $\left|G_{k}^{(a)}\right| \leq 1$ and $\arg G_{k}^{(a)}$ being proportional to $\Theta^{(a)}$, the object's coordinate along the ring.

Quite a general coupled-bunch FB circuit employing filter methods is shown in the above Fig., Ref.[1]. The circuitry extracts beam data as a band-pass signal at $\omega \simeq \pm \bar{h} \omega_{0}$, processes it at IF $\omega=0$ after frequency down-mixing, and then feeds an up-mixed band-pass correction back to the beam at $\omega \simeq \pm h^{\prime} \omega_{0}$. Here $\bar{h}, h^{\prime}$ are integers, and, generally, $\bar{h} \neq h^{\prime} ; \bar{h}, h^{\prime} \neq h$ where $h$ is the main RF harmonic number. The FB has the in-phase $(c)$ and quadrature $(s)$ paths with unequal gains. Treated in a small-signal approach near the FB's set-point, the former one controls an amplitude, while the latter - a phase, of the accelerating voltage seen by the beam. Either of the paths may be switched off altogether, say, $H^{(c)}=0$ for an injection error damping system, or in case of a dedicated phase control loop.

On neglecting the PU's (small) impact on the beam, the net voltage imposed by the FB can be put down as

$$
\begin{equation*}
u_{\mathrm{AD}}^{(t o t)}(t)=u_{\mathrm{AD}}^{(b)}(t)-u_{\mathrm{AD}}^{(i n d)}(t) \tag{4}
\end{equation*}
$$

where ( $b$ ) and (ind) denote beam-excited and FB-induced voltages, correspondingly; $u_{\mathrm{AD}}^{(\text {ind })}(t)$ is a linear functional of $u_{\mathrm{PU}}^{(b)}\left(t^{\prime}\right)$ taken at $t^{\prime} \leq t$ due to casualty.

Let $\delta \omega$ be a frequency deviation with $|\delta \omega| \ll\left(\bar{h}, h^{\prime}\right) \omega_{0}$. Whenever $H^{(c, s)}\left( \pm 2 \bar{h} \omega_{0}+\delta \omega\right)=0$, the state of the system is given by 2-D column-vectors

$$
\begin{align*}
\vec{u}_{\mathrm{PU}}(\delta \omega) & =\left(u\left(\bar{h} \omega_{0}+\delta \omega\right) ; u\left(-\bar{h} \omega_{0}+\delta \omega\right)\right)_{\mathrm{PU}}^{T}  \tag{5}\\
\vec{u}_{\mathrm{AD}}(\delta \omega) & =\left(u\left(h^{\prime} \omega_{0}+\delta \omega\right) ; u\left(-h^{\prime} \omega_{0}+\delta \omega\right)\right)_{\mathrm{AD}}^{T} \tag{6}
\end{align*}
$$

The in-out gain through the linear FB is

$$
\begin{equation*}
\vec{u}_{\mathrm{AD}}^{(i n d)}(\delta \omega)=\widehat{\chi}(\delta \omega) \vec{u}_{\mathrm{PU}}^{(b)}(\delta \omega) \tag{7}
\end{equation*}
$$

where $\widehat{\chi}(\delta \omega)$ is a $2 \times 2$ FB's `susceptibility' matrix,

$$
\begin{align*}
\chi_{11}(\delta \omega)= & 0.25 T K\left(h^{\prime} \omega_{0}+\delta \omega\right) S\left(\bar{h} \omega_{0}+\delta \omega\right) \times  \tag{8}\\
& \times\left(H^{(c)}(\delta \omega)+H^{(s)}(\delta \omega)\right) \mathrm{e}^{i\left(\phi^{\prime}-\bar{\phi}\right)} \\
\chi_{12}(\delta \omega)= & 0.25 T K\left(h^{\prime} \omega_{0}+\delta \omega\right) S\left(-\bar{h} \omega_{0}+\delta \omega\right) \times  \tag{9}\\
& \times\left(H^{(c)}(\delta \omega)-H^{(s)}(\delta \omega)\right) \mathrm{e}^{i\left(\phi^{\prime}+\bar{\phi}\right)} \\
\chi_{21}(\delta \omega)= & \chi_{12}\left(-\delta \omega^{*}\right)^{*} ; \chi_{22}(\delta \omega)=\chi_{11}\left(-\delta \omega^{*}\right)^{*}
\end{align*}
$$

Carrier phases $\bar{\phi}, \phi^{\prime}$ of to beam and accelerating voltage so as to comply with the FB's particular purpose and its layout along the ring.

The beam-excited voltages at the PU and AD are

$$
\begin{equation*}
u_{a}^{(b)}(\omega)=-\binom{W^{\prime}(\omega)}{T^{\prime}(\omega)} \sum_{k=-\infty}^{\infty} G_{-k}^{(a)} J_{k}\left(\omega-k \omega_{0}\right) \tag{10}
\end{equation*}
$$

where $W^{\prime}, T^{\prime}(\omega)$ are the gap-voltage responses to the beam current of PU and AD, respectively. Generally, the response of AD to external RF-drive $T(\omega) \neq T^{\prime}(\omega)$.

Insert Eqs. 10 into Eqs.7,4 and extract synchronous-to-beam $E$-field harmonics from Eq.3. Use Eq. 2 to truncate $\sum_{k}$. Then, to generalize the commonly used impedance concept introduced by Eq.1, the FB can be treated as imposing the $E$-field harmonics

$$
\begin{gather*}
E_{k}^{(f b)}(\Omega)=-L^{-1}\left(Z_{k k}(\omega) J_{k}(\Omega)+\right.  \tag{11}\\
\left.+Z_{k, k-h^{\prime}+\bar{h}}^{(f b)}(\omega) J_{k-h^{\prime}+\bar{h}}(\Omega)+Z_{k, k-h^{\prime}-\bar{h}}^{(f b)}(\omega) J_{k-h^{\prime}-\bar{h}}(\Omega)\right)
\end{gather*}
$$

through coupling impedances

$$
\begin{align*}
Z_{k k}(\omega) & =T^{\prime}(\omega)\left|G_{k}^{(\mathrm{AD})}\right|^{2}  \tag{12}\\
Z_{k, k-h^{\prime}+\bar{h}}^{(f b)}(\omega) & =-\chi_{11}\left(\omega-h^{\prime} \omega_{0}\right) \times  \tag{13}\\
& \times W^{\prime}\left(\omega-h^{\prime} \omega_{0}+\bar{h} \omega_{0}\right) G_{k}^{(\mathrm{AD})} G_{-k+h^{\prime}-\bar{h}}^{(\mathrm{PU})} \\
Z_{k, k-h^{\prime}-\bar{h}}^{(f b)}(\omega) & =-\chi_{12}\left(\omega-h^{\prime} \omega_{0}\right) \times  \tag{14}\\
& \times W^{\prime}\left(\omega-h^{\prime} \omega_{0}-\bar{h} \omega_{0}\right) G_{k}^{(\mathrm{AD})} G_{-k+h^{\prime}+\bar{h}}^{(\mathrm{PU})}
\end{align*}
$$

Here $\omega=k \omega_{0}+\Omega, k \sim h^{\prime}>0,|\Omega| \ll \omega_{0}$. The negativefrequency domain of $k \sim-h^{\prime}<0$ is arrived at with the reflection property $Z_{-k,-k^{\prime}}\left(-\omega^{*}\right)^{*}=Z_{k k^{\prime}}(\omega)$.

Eq. 12 yields the coupling impedance of AD itself treated as a passive device in line with Eq.1. Eqs.13,14 represent an active response of the FB and account for cross-talk between harmonics $E_{k}$, $J_{k^{\prime}}$ with $k \neq k^{\prime}$ caused by down- and up-mixing of frequencies. Impedances $Z_{k k^{\prime}}^{(f b)}(\omega)$ are no longer subject to restriction $\operatorname{Re} Z_{k k^{\prime}}^{(f b)}(\omega) \geq 0$, which is to introduce damping into the beam motion. The balance $H^{(c)}(\delta \omega)=H^{(s)}(\delta \omega)$ of the FB's path gains results in matrix $\widehat{\chi}$ becoming diagonal, and in $Z_{k k^{\prime}}^{(f b)}(\omega)$ with $\left|k-k^{\prime}\right|=h^{\prime}+\bar{h}$ vanishing. In injection error damping systems, the FB's path gains and, hence, $Z_{k k^{\prime}}^{(f b)}(\omega)$ may be scaled reciprocally to, say, the average beam current $J_{0}$.

## B. Circuitry with $P U=A D$

Take $h^{\prime}, \bar{h}=h, W^{\prime}(\omega)=T^{\prime}(\omega)$ with PU and AD being merged into a single device AC, an Accelerating Cavity. This
particular case represents an RF FB around the final power amplifier which is responsible for the reduction of periodic beam-loading transients and coupled-bunch instability damping, Ref.[2]. Now, Eq. 4 is kept intact while the PU detects both, the beam-imposed and correction signals. Therefore, Eq. 7 have to undergo an essential modification:

$$
\begin{equation*}
\vec{u}_{\mathrm{AC}}^{(i n d)}(\delta \omega)=\widehat{\chi}(\delta \omega) \vec{u}_{\mathrm{AC}}^{(t o t)}(\delta \omega) \tag{15}
\end{equation*}
$$

due to which the coupling impedances to enter Eq. 11 acquire the form other than that given by Eqs.12-14,

$$
\begin{align*}
Z_{k k}(\omega)+Z_{k k}^{(f b)}(\omega) & =\varepsilon_{11}^{-1}\left(\omega-h \omega_{0}\right) \times  \tag{16}\\
& \times T^{\prime}(\omega)\left|G_{k}^{(\mathrm{AC})}\right|^{2} \\
Z_{k, k-2 h}^{(f b)}(\omega) & =\varepsilon_{12}^{-1}\left(\omega-h \omega_{0}\right) \times  \tag{17}\\
& \times T^{\prime}\left(\omega-2 h \omega_{0}\right) G_{k}^{(\mathrm{AC})} G_{-k+2 h}^{(\mathrm{AC})}
\end{align*}
$$

where $\omega=k \omega_{0}+\Omega, k \sim h>0,|\Omega| \ll \omega_{0}$ and

$$
\begin{gather*}
\widehat{\varepsilon}(\delta \omega)=\widehat{I}+\widehat{\chi}(\delta \omega)  \tag{18}\\
\widehat{\varepsilon}^{-1}(\delta \omega)=\frac{1}{\operatorname{Det} \widehat{\varepsilon}(\delta \omega)}\left(\begin{array}{cc}
1+\chi_{22}(\delta \omega) & -\chi_{12}(\delta \omega) \\
-\chi_{21}(\delta \omega) & 1+\chi_{11}(\delta \omega)
\end{array}\right) \tag{19}
\end{gather*}
$$

Here $\widehat{I}, \widehat{\varepsilon}(\delta \omega)$ and $\widehat{\varepsilon}^{-1}(\delta \omega)$ are $2 \times 2$ matrix unit, FB's 'permeability' matrix and its inverse, correspondingly.

This FB may turn self-excited, which is avoided technically by putting zeros of $\operatorname{Det} \widehat{\varepsilon}(\delta \omega)$ into the lower half-plane $\operatorname{Im} \delta \omega<$ 0 through a proper tailoring of $H^{(c, s)}(\delta \omega)$.

It is evident hereof that by substituting Eqs.16-17 for Eqs.1214 the formulae to follow can be extended to treat the important case of $h^{\prime}, \bar{h}=h ; \mathrm{PU}, \mathrm{AD}=\mathrm{AC}$ as well.

## III. CHARACTERISTIC EQUATION

## A. General Case

The total $E$-field at the orbit is a sum of two terms

$$
\begin{equation*}
E_{k}^{(t o t)}(\Omega)=E_{k}^{(e x t)}(\Omega)+E_{k}^{(f b)}(\Omega) \tag{20}
\end{equation*}
$$

The former one, (ext) is imposed from the outside, say, by an external RF drive. The latter, $(f b)$ is the induced response of the environment to the coherent motion of the beam: its perturbed current harmonics $J_{k}(\Omega)$ drive the FBs, both unintentional (Eq.1) and issued (Eq. 11 with its negative-frequency counterpart), to yield

$$
\begin{equation*}
E_{k}^{(f b)}(\Omega)=-L^{-1} \sum_{k^{\prime}=-\infty}^{\infty} z_{k k^{\prime}}\left(k \omega_{0}+\Omega\right) J_{k^{\prime}}(\Omega) \tag{21}
\end{equation*}
$$

$z_{k k^{\prime}}(\omega)$ having, at most, three non-trivial elements per row:

$$
\begin{align*}
z_{k k^{\prime}}(\omega) & =Z_{k k^{\prime}}(\omega) \delta_{k^{\prime} k}+  \tag{22}\\
& +Z_{k k^{\prime}}^{(f b)}(\omega)\left(\delta_{k^{\prime}, k-\left(h^{\prime}-\bar{h}\right) k /|k|}+\delta_{k^{\prime}, k-\left(h^{\prime}+\bar{h}\right) k /|k|}\right)
\end{align*}
$$

The first member in r.h.s. of Eq. 22 incorporates effect of all the passive devices available.

From now on, one enters a standard route of instability analysis, and via the Vlasov's linearized Eq. finds

$$
\begin{equation*}
J_{k}(\Omega)=L \sum_{k^{\prime}=-\infty}^{\infty} y_{k k^{\prime}}(\Omega) E_{k^{\prime}}^{(t o t)}(\Omega) \tag{23}
\end{equation*}
$$

Here $y_{k k^{\prime}}(\Omega)$ is the beam `admittance' matrix which, say, for the beam of average current $J_{0}$ in $M \leq h(h / M$ is an integer $)$ identical and equispaced bunches is equal to

$$
\begin{align*}
y_{k k^{\prime}}(\Omega)= & C J_{0}\left(Y_{k k^{\prime}}(\Omega) / k^{\prime}\right) \sum_{l=-\infty}^{\infty} \delta_{k-k^{\prime}, l M}^{\infty}  \tag{24}\\
Y_{k k^{\prime}}(\Omega)= & -i \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} \frac{m}{\Omega-m \Omega_{s}(\mathcal{J})} \times  \tag{25}\\
& \times \frac{\partial F_{0}(\mathcal{J})}{\partial \mathcal{J}} I_{m k}(\mathcal{J}) I_{m k^{\prime}}^{*}(\mathcal{J}) d \mathcal{J}
\end{align*}
$$

Here $(\psi, \mathcal{J})$ are the longitudinal angle-action variables introduced in the phase-plane $\left(\vartheta, \vartheta^{\prime} \equiv d \vartheta / d t\right)$ with the origin $\vartheta=0$ being put on the reference particle of a bunch; $\Omega_{s}(\mathcal{J})=d \psi / d t$ is the non-linear synchrotron frequency; $F_{0}$ is unperturbed bunch distribution normalized to unit; functions $I_{m k}^{*}(\mathcal{J})$ are the coefficients of series which expand a plane wave $\mathrm{e}^{i k \vartheta}(\mathcal{J}, \psi)$ into sum over multipoles: $\sum_{m} I_{m k}^{*}(\mathcal{J}) \mathrm{e}^{i m \psi}$. The leftmost factor $C$ in Eq. 24 is

$$
\begin{equation*}
C=\Omega_{0}^{2} /\left(h V_{0} \sin \varphi_{s}\right) \tag{26}
\end{equation*}
$$

where $\Omega_{0}$ is the small-amplitude synchrotron frequency (circular), $V_{0}$ is the nominal amplitude of accelerating voltage, $\varphi_{s}$ is the stable phase angle $\left(\varphi_{s}>0\right.$ below transition, the synchronous energy gain being $\mathrm{e} V_{0} \cos \varphi_{s}$ ).

Insert Eq. 23 into Eq. 21 and use Eq. 20 to get

$$
\begin{align*}
E_{k}^{(e x t)}(\Omega) & =\sum_{k^{\prime}=-\infty}^{\infty} \epsilon_{k k^{\prime}}(\Omega) E_{k^{\prime}}^{(t o t)}(\Omega)  \tag{27}\\
\epsilon_{k k^{\prime}}(\Omega) & =\delta_{k k^{\prime}}+\chi_{k k^{\prime}}^{\prime}(\Omega)  \tag{28}\\
\chi_{k k^{\prime}}^{\prime}(\Omega) & =\sum_{k^{\prime \prime}=-\infty}^{\infty} z_{k k^{\prime \prime}}\left(k \omega_{0}+\Omega\right) y_{k^{\prime \prime} k^{\prime}}(\Omega) \tag{29}
\end{align*}
$$

Here $\chi_{k k^{\prime}}^{\prime}(\Omega), \epsilon_{k k^{\prime}}(\Omega)$ are `susceptibility' and 'permeability' matrices of 'beam \& FB' medium. Zeros of the characteristic Eq.

$$
\begin{equation*}
\operatorname{Det} \widehat{\epsilon}(\Omega)=0 \tag{30}
\end{equation*}
$$

are the eigen-frequencies of beam coherent oscillations which must be located in the lower half-plane $\operatorname{Im} \Omega \leq-1 / \tau_{\epsilon}<0$. Here $\tau_{\epsilon}$ is the sought-for damping time of beam coherent oscillations which, as well, determines duration of beam injection transients under the FB showing themselves up, mainly, at the dipole side-bands $\Omega \simeq \pm \Omega_{0}$.

## B. Narrow-Band Case

Label the normal coupled-bunch modes by $n=0,1, \ldots, M-1$, phase shift between adjacent bunches being $2 \pi n / M$. Suppose $h^{\prime} / M$ and $\bar{h} / M$ be integers, due to which the FB would not couple beam modes whose $n^{\prime} \neq n$. Let band-width of the FB be $\Delta \omega \ll M \omega_{0}$. Hence, there would be only four resonant harmonics $J_{k}(\Omega)$ of beam current perturbation which belong to the given mode $n$ and cross-talk through the FB. Their subscripts are

$$
\begin{equation*}
k_{1,2}^{\prime}=n+l_{1,2}^{\prime} M \simeq \pm h^{\prime}, \quad \bar{k}_{1,2}=n+\bar{l}_{1,2} M \simeq \pm \bar{h} \tag{31}
\end{equation*}
$$

with $l_{1,2}^{\prime}, \bar{l}_{1,2}$ the integers. The essential $E$-field harmonics $E_{k}(\Omega)$ to occur within $\Delta \omega$ are the two with $k=k_{1,2}^{\prime}$. In this
$2 \times 2$ case $\operatorname{Det} \hat{\epsilon}(\Omega)$ can be found, which results in characteristic Eq. to follow,

$$
\begin{align*}
1 & +\chi_{k_{1}^{\prime} k_{1}^{\prime}}^{\prime}(\Omega)+\chi_{k_{2}^{\prime} k_{2}^{\prime}}^{\prime}(\Omega)+  \tag{32}\\
& +\left[\chi_{k_{1}^{\prime} k_{1}^{\prime}}^{\prime}(\Omega) \chi_{k_{2}^{\prime} k_{2}^{\prime}}^{\prime}(\Omega)-\chi_{k_{1}^{\prime} k_{2}^{\prime}}^{\prime}(\Omega) \chi_{k_{2}^{\prime} k_{1}^{\prime}}^{\prime}(\Omega)\right] \simeq 0
\end{align*}
$$

L.h.s. of Eq. 32 involves dispersion integrals $Y_{k k^{\prime}}$ whose subscripts are $k=k_{1,2}^{\prime}, \bar{k}_{1,2}$ and $k^{\prime}=k_{1,2}^{\prime}$. Given $\Delta \omega \Delta \vartheta_{0} / \omega_{0} \ll$ $\pi$, where $\Delta \vartheta_{0}$ is bunch half-width, $Y_{k k^{\prime}}$ become slow functions of $k, k^{\prime}$, which allow substitutions $k_{1,2}^{\prime} \simeq \pm h^{\prime}, \bar{k}_{1,2} \simeq \pm \bar{h}$ be performed in subscripts of all the essential $Y_{k k^{\prime}}$ that enter the characteristic Eq. 32.

Usually, at $\Omega \simeq m \Omega_{0}+i 0$ a single resonant term $Y_{k k^{\prime}}^{(m)}$ dominates in $\sum_{m}$ of Eq.25. Hereof, one arrives at the reflection properties of $Y_{k k^{\prime}} \simeq Y_{k k^{\prime}}^{(m)}$,

$$
\begin{equation*}
Y_{-k, k^{\prime}} \simeq Y_{k,-k^{\prime}} \simeq(-1)^{m} Y_{k k^{\prime}}, \quad Y_{-k,-k^{\prime}} \simeq Y_{k k^{\prime}} \tag{33}
\end{equation*}
$$

Up to these two assumptions, expression in square brackets of Eq. 32 vanishes, while the characteristic Eq. itself reduces to much a simpler form

$$
\begin{equation*}
1+C J_{0}\left(\zeta_{n}(\Omega) Y_{h^{\prime} h^{\prime}}(\Omega)+\zeta_{n}^{(f b)}(\Omega) Y_{\bar{h} h^{\prime}}(\Omega)\right) \simeq 0 \tag{34}
\end{equation*}
$$

being put down in terms of the effective, or instability driving, impedances at side-bands $\Omega \simeq m \Omega_{0}$ of coupled-bunch mode $n$,

$$
\begin{align*}
\zeta_{n}(\Omega) \simeq & Z_{k_{1}^{\prime} k_{1}^{\prime}}\left(k_{1}^{\prime} \omega_{0}+\Omega\right) / k_{1}^{\prime}+\ldots \quad k_{1}^{\prime} \rightarrow k_{2}^{\prime},  \tag{35}\\
\zeta_{n}^{(f b)}(\Omega) \simeq & Z_{k_{1}^{\prime}, k_{1}^{\prime}-h^{\prime}+\bar{h}}^{(f b)}\left(k_{1}^{\prime} \omega_{0}+\Omega\right) / k_{1}^{\prime}+  \tag{36}\\
& +(-1)^{m} Z_{k_{1}^{\prime}, k_{1}^{\prime}-h^{\prime}-\bar{h}}^{(f b)}\left(k_{1}^{\prime} \omega_{0}+\Omega\right) / k_{1}^{\prime}+ \\
& +\ldots \quad k_{1}^{\prime} \rightarrow k_{2}^{\prime}, \quad h^{\prime} \rightarrow-h^{\prime}, \quad \bar{h} \rightarrow-\bar{h} .
\end{align*}
$$

Items with $(-1)^{m}$, if any, are responsible for the intrinsic asymmetry in damping of within-bunch multipole modes $m$ with opposite parity inherent in FBs with the unbalanced path gains, $H^{(c)} \neq H^{(s)}$.

## References

[1] F. Pedersen, CERN PS/90-49(AR), CERN, Geneva, 1990.
[2] D. Boussard, CAS Proceed., CERN/87-03, Vol. 2, Geneva, 1987, pp. 626-646.

