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I. INTRODUCTION

The coupled resonator chain is widely used as an
accelerating unit. Many people have successfully treated this
kind structure with different ways in lossless case to
understand the steady state behavior of the chain. A chain of
N coupled resonators has N dispersion resonate modes which
has different properties. In general, when losses and frequency
error are present in cavity the solution are no longer the
simple eigenfunction of the homogeneous equations, but are
superpositions of all the eigenfunctions. Many such structures,
especially superconducting coupled cavity, have been
operated in the " π  mode" as accelerator elements. According
to the theoretical analyze in lossless case, pai-mode operating
means group velocity, which is relative to the power flowing
in the structure and the energy stored per unit length of the
structure, is zero and in steady state no power of this mode
can flow in the cavity. Strictly speaking, operation in the π
mode is not possible. In practical case any cavity has losses,
the energy must be supplied through excitation of adjacent
modes to compensate for losses and there are resultant phase
changes in the cavity. The phase deviation from π  radians
per cell is given by [Nagle (1964), Knapp (1964), and Smith
(1964)].[1]
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1
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Any machining error also will produce frequency and

phase deviation from theoretical modes. As many papers
described what was so called " π  mode" only means the field
in the cavity has been flatted by tuning individual cell
frequency.[2,3,4,5]  It is true the π  mode has flat field
distribution, but the cavity with flat field may not exactly
operate at π  mode. This paper discusses the affection of the
terminated cell and tuning on operating mode of coupled
cavity at an ideal steady state by using eigenequations and
perturbation theory.

II .  THE SOLUTION OF THE
EIGENEQUATION FOR TWO KIND
TERMINALS

For the coupled resonator chain there are two different
kind terminals, two half end cell terminal which put the
shorted plat at a symmetric plan and two full end cell
terminal. Many of the electrical properties of a chain with
N+1 coupled resonators have been investigated by
considering the properties of N+1 coupled circuits. For N+1
cell cavity the circuit equations are
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lossless and no generator included case Q ⇒ ∞ and In=0.
There are N+1 solutions to the homogeneous equation of the
form. For half end cell terminated, m=K, the solutions are
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It indicated that for half end cell terminated without loss

or other adjustment the chain does have zero and π  mode,
but for both zero and π  modes ( ϕ =0, π  ) the group

velocity vg =0.

As above, for full end cell terminated, m=k/2 the solutions
are
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There is no zero and π  mode, and the field amplitude along
axis of the cavity operating in the highest mode is no longer
uniform and tilts from the center of the cavity to ends, but if
the single cell is the same, both with full and half end cell
terminal the dispersion functions have same form. At an
unperturbed case the field along axis of the cavity is flatness
only when exactly operating at zero or π  mode, this is why
after the field was tuned flatness, one thinks cavity operating
in the " π  mode", as mentioned above it may be not right,
because of perturbation.

III. PERTURBATION EQUATIONS AND
FIRST ORDER SOLUTIONS OF COUPLED
CIRCUITS

Since the π  mode has a higher effective shunt impedance,
most superconducting multi-cell cavities were demanded
operating at " π  mode". For full end cell terminated cavity
there is no π  mode, introducing some frequency error in
single cell is needed to move the highest mode to " π  mode".
If the frequency ω i  error is small, it can be considered



perturbation, the perturbation theory can be used to treat this
kind problem.[6] For simple, five full cell cavity has been
treated. In ideal case and steady state, the circuit eigenfuctions
of the cavity can expressed as a matrix form as follow:
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Here λ i = ω i
−2 ;A= ω −2 ; L is an operator, An is the

eigenvalues and Xn is the eigenvectors. In unperturbed case
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All eigenvectors are orthogonal each other, XiXj=0 (i≠j)
and XiXj=const (i=j) (i,j=1,2...5), the solutions of 5-cell
cavity are the same as results calculated by SUPERFISH
shown in Fig.1.
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Fig. 1: The field distribution and dispersion curve of a
five-cell cavity calculated by SUPERFISH a) full end cell
terminnated without tuning b) full end cell terminated with
tuning axial field flatness. c) half end cell terminated.

When the individual cell frequencies are not equal to each

other but the deviation ε i = λ i - λ  is small, | ε i |/ λ «1, (such
as a full end cell cavity after tuning field flatness. If the
central cell frequencies are equal, only needed to tuning full
end cells) the operator L can be written as L=L0+P, L0 is the
unperturbed part of the matrix operator, P is the perturbed
part, and the matrix elements of perturbation matrix
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0Xj  are unperturbed

eigenvectors.
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Since most single periodic couple cavities operate in the
highest mode, here i.e. mode 5 which so-called " π  mode",
only this mode has been calculated with first order
approximation.
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First order approximation
An=0An+1An ; Xn=0Xn+1Xn

Here 
ε i

λ ≅ −2δω i

ω , δω i  is the frequency error of the

individual cell (normally Σδω i
≠ 0). Substitute δω i  to the

equation one can get new operating mode ′ω  and relevant

phase ′ϕ . If the perturbation δω i  is very small, and
Σδω i =0 one still can use unpertuabed dispersion curve to

approximately calculate the group velocity vg ’

vg ’=L dω
dϕ = 1
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When tuning, in order to tune cavity field flatness, ,one can
let all parts of the eigenvector are equal and using symmetry,

and then calculate the needed ε i . Practically it is opposite,

af ter  tuning ε i ≅ 0 (i=1,2.....N-1) (middle cells) and
ε0 = ε N = εe  (end cells); i.e. only two end cells have
frequency error, in the case the perturbed operator is simple,
one can directly solve the eigenequation to get eigenvalues
and eigenvectors.

IV. DISCUSSION

In fact almost all superconducting multi-cell cavities are
terminated by full end cell, when the half end cell terminated
replaced by full end cell, the full end cell only had one side
coupled, the change of the boundary condition broke the
symmetry, and the field penetrated into two end beam pipes
to extend field area, sequentially, the field amplitude tilted
from center of the cavity to the ends, relevant phase shift
between cells decreased and the π  mode vanished, the
highest mode was (N+1) π /(N+2) (here N+1 are total cell
numbers of the cavity). From perturbation theory the
individual cell frequency error will cause the operating mode
and its properties change, such as phase shift and field
distribution, it was used for tuning cavity.

The cavity tuning includes tuning middle individual cell

(reduce frequency error ε i ) to eliminate field non-uniform
caused by mechanical tolerance and tuning end cells (add
suitable frequency error ε0 = ε N = εe ) to compensate the

field tilt caused by full end cell terminated and move the
operating mode to close " π  mode" in which the field along
the axis of cavity is flatness. Fig.2 is the field distribution of
the 5-cell cavity calculated by P. Fernandes and R.Parodi
using OSCAR2D code.

Fig.2 Inner field and axial field distribution of a five cells
accelerating structure calculated using OSCAR2D code
a)uncompensated, b) compensates.

From Fig 1 and Fig 2 one can see the effects of tuning and
terminating on the field distribution and phase shift (modes).
In this way after tuning Σδω i =2 εe ≠ 0, the average

individual cell frequency ω0 '  was changed

ω0 '= ω0+ δω = ω π
2  and δω  = Σδω i /(N+1), it means the

dispersion curve should parallel move up δω , which also can

directly be got by measuring the π /2 mode frequency ω π
2

The dispersion function and the group velocity still can be
described as

ωq
2 = ω0

' 2/(1+kcos ′ϕ )

vg ’=L dω
dϕ = 1

2 Lk ω0(1+kcos ′ϕ )
−3

2 sin ′ϕ
In theoretical one can tune cavity with Σδω i =0 by lower

middle cell and higher end cell frequencies or reverse, it also
can be checked by measuring ω π

2
. In practical tuning case

the beadpull was used to check the field amplitude, when the
field amplitude along the axis of the cavity is flat, the tuning
is done. After tuning with the average single cell frequency

ω0, which equals new π /2 mode ω π
2  of the tuned cavity

(for Σδω i =0), and coupling constant k which is same as

unperturbed k, one can calculate the dispersion curve and then
substitute the operating mode frequency measured (the
highest mode) into the dispersion function to calculate mode
properties, such as phase shift between cells and group
velocity.
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