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A dual-axis beam position monitor (BPM) consists of four
electrodes placed at 90

 

o

 

 intervals around the probe aperture.
The response signals of these lobes can be expressed as a sum
of moments.  The first order moment gives the centroid of the
beam.  The second order moment contains information about
the rms size of the beam.  It has been shown previously that the
second order moment can be used to determine beam emit-
tance [1].  To make this measurement, we must characterize the
BPM appropriately.  Our approach to this problem is to use a
pulsed wire test fixture.  By using the principle of superposi-
tion, we can build up a diffuse beam by taking the signals from
different wire positions and summing them.  This is done two
ways:  first by physically moving a wire about the aperture and
building individual distributions, and, second, by taking a two
dimensional grid of wire positions versus signal and using a
computer to interpolate between the grid points to get arbitrary
wire positions and, therefore, distributions.  We present the
current results of this effort.

 

I. INTRODUCTION

 

Here at Los Alamos, we have two photoinjector driven
electron linacs.  The first is an 8 MeV machine originally built
to drive the APEX free electron laser.  It has since been moved
from its original location and is currently being employed in
experiments investigating sub-picosecond bunching of an elec-
tron beam.  The second is the 20 MeV accelerator for the
Advanced Free Electron Laser experiment and has been oper-
ating since the summer of 1992.

Photoinjector driven electron accelerators are at the fore-
front of electron beam technology.  They produce beams of
unparalleled quality.  However, measuring second moment
properties of these beams, such as the rms emittance, is very
difficult [2].  This is due to their generally non-Gaussian beam
distributions.  In order to measure the rms emittance, we need
an approach that does not require prior knowledge of the beam
distribution.  Beam position monitors (BPMs) offer such a
technique [3].

For us to be able to use BPMs for emittance measurements,
we need a method of calibration for measuring the second
moment of the BPM signal.  Our approach is presented here.

 

II.  CALIBRATION THEORY

 

The BPMs that we will be using for this measurement were
originally built for the AFEL beamline [4].  These are capaci-
tive, or button-style, probes that differentiate the beam bunch 
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charge distribution that is induced on the probe electrodes.

 

A.  BPM Signal

 

For the square electrodes, or lobes, of our BPMs, the signal
induced by a relativistic beam on the lobe at angular position 

 

φ

 

is proportional to 

(1)

The radius of the BPM apeture is a, the angle subtended by the
BPM lobe is 

 

α

 

,   and  give the centroid position of the beam
and  the angled brackets indicate an rms average over the beam
distribution.  The term  is what we are trying to mea-
sure.   is equal to the rms average  in the coordinate
system centered on the beam distribution, and similarly for .

 

B.  Calibration equation

 

We are interested in extracting the quantity

from our BPM signals.  For a perfect BPM, with four identical
lobes at 0, 90, 180 and 270 degrees around the apeture, this
term is given by 

(2)

where S
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, S
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, S
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 and S
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 are the signals from the right, left, top
and bottom BPM lobes respectively (see Fig. 1) and k is a con-
stant to be determined.  However, the lobes of a real BPM will
not be identical in general.  Each will have a unique subtended
angle, 

 

α

 

, and a unique apeture radius a.  Therefore, equation
(2) must be modified to 

        (3)

where S is defined by

(4)

and the c

 

i

 

s are constants that need to be determined.  This is the
goal of our calibration procedure.
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B.  Method

 

To simulate a diffuse beam, we need to determine the lobe
response for a given grid point.  The obvious way to do this is
to move the wire to the desired position and measure its
response with the test fixture.   However, the signal to noise
ratio for a given beam gets better the more wires it contains.
With our test stand, we have found that it is generally neces-
sary to use at least 100 wires per simulated beam.  As a result,
complete calibration of a BPM can take several weeks.

Another way to determine lobe response is to create a map
of the BPM such as that in Fig. 3.  Using this map, we can
interpolate the response for any wire position.  This allows us
to duplicate the calibration procedure described above with a
computer.  Instead of weeks, the computer does a complete cal-
ibration in a day.  Part of our goal is to show that the two meth-
ods are effectively the same.

Figure 3:  Typical two dimensional map of a BPM lobe
response.  Center is at x = 0, y = 0 and grid squares are 0.5 mm
on a side.  The z axis is the lobe signal for a given wire position
in mV.
 

 

IV. EXPERIMENTAL RESULTS

 

To carry out the actual BPM calibration, a number of simu-
lated beams were generated with different s and s and
known x and y centroid positions.  

 

A.  Beam centroid equal to zero

 

According to the theory, we have five constants to deter-
mine to fully characterize the BPM for second moment mea-
surements.  The first step is to generate a data set with  and 
equal to zero.  Then, we fit the data to the equation

(5)

where S is the same as defined in (4).  Fig. 4 shows the results
for data generated using the test stand and for data generated
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Figure 1:  Schematic of BPM.

 

III. SIMULATING A DIFFUSE BEAM

 

In order to calibrate a BPM to measure the second moment,
we need the ability to input a known beam and look at the lobe
response.  To do this, we use the pulsed wire setup that cali-
brates the BPM for centroid measurements [5]. This apparatus
uses a thin wire running through the BPM apeture to simulate a

 

β = 1

 

 beam.  A signal is generated on the wire and the
responses of the BPM lobes are measured vs. wire location.

a b
Figure 2:  a)  Rectangular grid of 121 points within BPM ape-
ture.  b)  Same grid as in a, but with Gaussian distribution over-
laid.  The size of the dot indicates the weighting factor.

 

A.  Principle of superposition

 

A thin wire simulates a beam with zero width.  To simulate
a diffuse beam we use the principle of superposition.  We
define a rectangular grid such as that in Fig. 2a.  Each grid
point represents a wire position for which we can determine
the lobe responses.  On top of this grid we can superimpose a
distribution function, such as a Gaussian (Fig. 2b).  By sum-
ming the lobe signals, multiplied by their appropriate weight-
ing factor as determined by the distribution function, we can
get the response of each of the lobes for the total beam.  The
total beam is the beam that is created by the “beamlets” of Fig.
2b.
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using the computer model.
The fit to the two sets of data give the following results:
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2.2, c
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 = 82.2 and c
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 = 

 

−

 

0.19 (test stand)

c

 

1

 

 = 

 

−

 

2.2, c
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 = 81.9 and c
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 = 

 

−

 

0.11 (computer).

These results, for all practical purposes, are the same.  (The c

 

5

 

term is so small that it could be dropped.)

a

b

Figure 4:  a)  Q vs. S generated by test stand where
 in mm

 

2

 

 and S is defined by (4).  b) Q vs. S gener-
ated by computer using interpolation of BPM map.  225 wires
were used and a Gaussian distribution was overlaid on the grid
for both plots.  The solid lines are the fits to the data using (5).

 

B.  Beam centroids nonzero

 

To determine the remaining two constants, we vary  and
, generating data sets as in Fig. 4 for each centroid position.

Fitting these data sets with (5), we get plots of how c

 

1

 

 changes
with  and  (Fig. 5).  From these, we get

c

 

3

 

 

 

= 0.505 and 
c4 = 0.054.

As of this publication, we have not finished taking data on
the test stand for c3 and c4, so comparisons with the computer
generated data of Fig. 5 are not available.

Q σx
2 σy

2–≡

x
y

x y

c1

a
c1

b
Figure 5:  a) c1 vs. x (in mm) and b) c1 vs. y (in mm).

V.  CONCLUSION

The calibration of our BPMs for second moment measure-
ments is going well.  So far, our data fits our model very well
and is well understood.  In addition, early results indicate that
the computer interpolation method is a legitimate approach to
speeding up the process.
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