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Abstract

Beam profile monitors employing phosphor screens will be
used in the beam transfer line from AGS to RHIC, now under
construction at BNL, as beam profile monitors. Data analysis
procedures are being developed for the transfer line test sched-
uled for the fall of 1995. In addition to the emittance and Twiss
parameters calculation, it will include direct reconstruction of
the beam phase space density distribution by using an Abel in-
version with the minimal assumption of an elliptically symmet-
ric phase space distribution . The percent emittance comes out
of the process naturally.

I. INTRODUCTION

Two dimensional beam profiles will be measured using the
video profile system [1] in the RHIC injection line. They will
be used to monitor beam quality and measure beam emittance
and Twiss parameters for beamline matching. Six flags will be
for emittance measurement, though at most four can be used
simultaneously, limited by the number of frame grabbers. This
will enable us to measure the input beam parameters on a bunch
by bunch basis with some redundancy for error checking.

The information on horizontal and vertical coupling extracted
from the two dimensional profile directions will be used to iden-
tify and in feedback to correct the coupling. If significant cou-
pling is present a complete four dimensional phase space anal-
ysis, ignoring the even more complicated additional coupling
with the longitudinal dimension, is necessary. A meaningful and
reliable complete phase space analysis is impossible by virtue of
the number of flags, the necessary measurement accuracy and
the complexity of the required analysis. We will assume the
coupling effect is negligible after correction and limit the analy-
sis to one dimension at a time.

II. SCATTERING EFFECTS

Going through the flags, beam particles will be scattered. The
bulk of the deflection is due to elastic Coulomb scattering from
the nuclei within the screen. The distribution of the deflections
is roughly Gaussian for small deflections while having greater
probability for large-angle scattering[2]. In the limit of thin
films where particles' position can be treated as unchanged go-
ing through the target, the scattering effect can be easily cal-
culated[3] using a Gaussian scattering angle distribution and a
Gaussian beam distribution
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where� is the rms deflection angle going through flag. This re-
sult can be extanded to arbitrary distributions for rms quantities.

With the RHIC injection line parameters, in the worst case
the emittance dilution can reach 30% which will greatly affect
the accuracy of the measured emittance. Fortunately, scattering
effects can be compensated with measurements.

If the beam transfer matrix from flagi to the next flagi + 1

is

�
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T21 T22

�
then the increase of rms beam width at flag

i + 1 due to the scattering of flagi follows
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This effect adds up quadratically from flag to flag. The above
equation can be used to obtain each flag's scattering effect by
measuring the beam width with and without the flag in front.
Thus the effect of scattering on emittance measurement, at least
mostly, can be corrected.

III. EMITTANCE CALCULATION

At least three independent measurements are needed to deter-
mine�; �;  and�. The measurements do not not necessarily
have to be simultaneous. With a very good repeatability from
bunch to bunch, they could also be from measurements of mul-
tiple bunches with flags at different locations. They could also
be measurements with one or more fixed flags but with varying
magnet settings.

Emittance and Twiss parameter calculation from beam width
measurements is strait forward[4][5]. Basic formula are repro-
duced here for reference. Details can be found in [4][5] and [6].

The beam width at flagi is related to the parameters at loca-
tion s0 asyi � w2
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gi2 = �2t11 � t12, gi3 = t212 with [tij] being the transfer matrix
from s0 to flagi, anda1;2;3 = ��; ��; �.
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where�i is the rms error inw2
i , yields the normal equation for

the problem
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The solution is simply

(aj) = [Vjk] (bk)

where[V ] = [N ]�1.
The standard error for any dependent variable,f = f(ai),

can be easily calculated with[V ]:
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Foraj it is simply�2aj = Vjj.
The calculations done with artificial profiles for the RHIC in-

jection line show that with10% rms error in the measured beam
widths, the standard error in calculated beam emittance varies
from a few percent to above20% depending on which three
flags are used, reflecting on the between-flag betatron phase ad-
vances. When two flags are multiples of180� of betatron phase
apart they are images of each other and do not provide indepen-
dent data. When the phase advance is close to multiples of 180
degrees, theoretically the problem is perfectly solvable, but the
result is increasingly sensitive to small errors in beam widths.
The phase advance, however, depends on initial beam parame-
ters as well as the transfer line lattice, so what actually turns out
in actual measurements may be different from bunch to bunch.

IV. PHASE SPACE DISTRIBUTION

The full property of the beam is characterized by its phase
space density distribution. Once the Twiss parameters and emit-
tance are determined, this phase space distribution can be re-
constructed from the measured density using Abel transforma-
tion technique, and the only underlining assumption needed is
that the distribution has elliptical symmetry. Having the 2-
dimensional phase space distribution also makes the calculation
of partial beam emittance easy and unambiguous. There have
been percentage emittance calculations reported with various
assumption[5][4]. Elliptical symmetry is the least assumptions
needed for this purpose.

A 2-dimensional beam phase space distribution with elliptical
symmetry,�(x; x0) = �(x2 + 2�xx0 + �x02), can be trans-
formed into a circular distribution in(u; v) space with the trans-
formation
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The resulting distribution will be�(u2 + v2). The projection of
the phase space distribution is directly related with the measured
profile by

Z
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Now �(u; v) has circular symmetry, i.e.�(u; v) = �(u2 +
v2), and the distribution can be recovered from the projection
through inverse Abel transform[7].

For a function with circular symmetry in(x; y) space,
f(x; y) = f(r), Abel transforms establish the relation between

the distribution and its projections:
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The direct inversion in Eq. 1 involves derivation and integra-
tion of a divergent function and therefore is not suited for nu-
merical applications. There are various ways to get around the
problem[8], including the filtering of raw data to reduce noise,
using transform techniques to avoid the divergence. One can
also fit the data to analytical functions based on physical models
and carry out the inversion analytically. The latter approach is
what we have chosen for its easy control. It reduces the further
computation and also serves the noise filtering purpose.

We choose Gaussian weighted Hermite polynomials to ex-
pand the beam profile:
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Because this set of functions are orthogonal, we can avoid the
fitting of parameters thus simplifying the calculation of expan-
sion coefficients. Since the undistorted profile should be sym-
metric about the center, based on the elliptical phase space dis-
tribution assumption, we only need the even orders of Hermite
polynomials. The maximum order that has to be used in the ex-
pansion, however, is not as small as we might have expected or
hoped, even when the profile is close to a Gaussian distribution.
This is because errors in the calculation of rms of the profile
will introduce many high order components. As a result 10 to
20 terms have to be included usually. Thankfully, the expansion
process itself is very fast and high number of terms does not con-
stitute much inefficiency in the overall reconstruction process.

The Abel inversion of the Gaussian weighted Hermite poly-
nomials can be calculated analytically[3]. The values of the
functions, their Abel inversions and the fraction of beam inside
any radius can all be calculated through recursion relations. The
result of the inversion is in the form of
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wherer is normalized to the beam rms size.
The reconstructed phase space distribution, with normalized

coordinate against the rms beam size, can be directly used to
calculate the percentage emittance, or the corresponding beam
profile through Abel transform.

The fraction of beam inside a radius R in the(u; v) normal-
ized phase space, is
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SinceR is normalized against rms beam size, the percentage
emittance corresponding to� is simply

�� = R�



Figure 1. Beam profile and reconstructed phase space distribu-
tion.

The fractional beam profile, that of the fraction in the central
part of the phase space can also be obtained by Abel transform-
ing �(r) with its value set to zero outsider = R.

As an example, a beam profile composed of a Gaussian plus a
shoulder component is constructed and its corresponding phase
space distribution is calculated using the technique described
above. They are shown in Fig. 1. The profiles for different frac-
tions of core beam can also be easily extracted. They are shown
in Fig. 2 for the example above.

Figure 2. Profiles of various core beam fractions.

In the case where elliptical symmetry assumed throughout
this report is lost, the reconstruction of phase space distribution
theoretically need infinite number of profile measurements. Ex-
cept the aspect ratio change that can happen in the beam phase
space, the problem is the same as in computed tomography. To
reconstruct a 2-dimensional object from all of its projections is
the 2-dimensional Radon inversion problem. With the very lim-
ited number of beam profiles we can only expect to extract some

coarse features of the phase space distribution using some of the
numerical techniques in doing Radon inversion. This has yet to
be investigated.
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