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Abstract

A scheme to describe a nonlaminar beam dynamics in the
electromagnetic field is suggested. It is based on the Lie al-
gebraic methods and uses the quasi-equilibrium plasma model.
Numerical results are represented.

I. INTRODUCTION
Using of the paraxial approximation for the descriptionof high

current beam dynamics leads to applying the Lie algebraic meth-
ods to calculate transfer map, that relates initial and final coordi-
nates and momenta of an arbitrary particle in the sixdimensional
phase space [1], [2] . The main difficulty, when dealing with a
bright beam, is to take into account the influence of space charge
on variation of beam characteristics. For laminar beams it was
done in [3], [4] in terms of charged particle optics. In this pa-
per the powerful methods, mentioned above, are used to describe
high current (nonlaminar) beam dynamics, when space charge is
altering. A beam is considered as a statistical system of charged
particles. The results of numerical simulations for a beam being
focused by longitudinal magnetic field are given as a simple ex-
ample and compared with known facts from plasma physics.

II. BACKGROUND MATERIAL:
COMPUTATION OF TRANSFER MAP

The location of any particle of a beam
in six-dimensional phase-space is characterized by the vector
�(X;Y; T; PX ; PY ; PT ). An independent variable z is the coor-
dinate along the reference trajectory. Variables X and Y denote
transverse displacement of an arbitrary particle from the refer-
ence one, T fixes the difference of their time coordinates. And
the least three variables are correspondingly the canonical con-
jugate momenta. Using of the reference trajectory means the de-
scription of a beam dynamics in paraxial approximation.

According to the definition, transfer mapM relates initial and
final generalized coordinates and momenta of an arbitrary parti-
cle,

�(z) = M �in(z):

The action of this operator can be considered as a canoni-
cal transformation. Taking into account the canonical trans-
formations generate a symplectic group, we can factorize M ,
i.e. write it as an infinite product of Lie transformations of Lie
operators associated with some homogeneous polynomials fm
[1], [2]. Since, for the first, the fundamental Poisson bracket
defining Lie operators is invariant in canonical transformations,
for the second, ten symplectic group generators realize the pre-
sentation of Lie algebra, it is possible to express fm over polyno-
mials Hm, obtained as one-particle Hamiltonian decomposition.

Particle’s Hamiltonian is:

H (X;Y; T; PX; PY ; PT ; z) = �
1

c
f(PT + p0t + q�)2

�(PX � qAX )2c2 � (PY � qAY )
2c2 �m2c4g

1

2

�qAz �
PT + p0t

v0
; (1)

(m and q are the particle rest mass and charge, c— speed of light;
reference trajectory parameters are marked by subscript 0).

Scalar and vector potentials of the electromagnetic field� and
A consist of two parts, that describe the influence of the external
field and space charge upon a particle:

�(X;Y ; z) = �field(X;Y ; z) + �beam(X;Y ; z);

A(X;Y ; z) = Afield(X;Y ; z) +Abeam(X;Y ; z): (2)

It is assumed �field andAfield are known. Their structure is
determined by given focusing systems that are used to form or to
transport a beam. If the form of �beam andAbeam is also known
and the decomposition on the polynomials have been done for
them, we can apply the Dragt method [1], [2] to express poly-
nomials fm over Hm and write down transfer map M in obvi-
ous form. To find outM , for example, through the fourth order,
the system of three matrix differential equations must be derived
(their structure is adduced in [1], [2]).

III. SPACE CHARGE CALCULATION
Inasmuch mapping has been done for any particle of a beam as

we will use one-particle distribution function g(�; z) to calculate
the potentials �beam andAbeam.

The Coulomb interaction dominates in comparison with mu-
tual collisions between the particles in high current beam [5] and
we can be satisfied by zero approximation for gas parameter �
(ratio of average potential energy to the mean kinetic) to calcu-
late an alteration of g(�; z) according to the Liouville theorem:

d

dz
g(�; z) = 0: (3)

Now, instead of solving the Landau-Vlasov equation and the
system of the Maxwell equations jointly, we choose another
way. Space charge structure proves to be invariable along z

within some length l, that is greater than the Debye radius, but
don’t exceed the range of a particle without collisions. There-
fore, on every elementary length l of the interaction channel
time-independent space charge acts to any particle of a beam.
Moreover, the distribution function satisfies the Liouville theo-
rem (3). Hence, moving high current beam as a statistical sys-
tem passes through the consequence of equilibrium states only.



It is obviously, the volume occupied by the particles is slowly
varying parameter for given adiabatic process. Thus, g(�; z) of
the quasi-equilibrium system under review assumes to obey the
Boltzmann–Maxwell statistics along the whole interaction chan-
nel. Only the shape of the distribution function is altering on ev-
ery length l.

To calculate Abeam on given elementary length the quasi--
stationary approximation [6] can be used:

Abeam
X (X;Y ) = 0; Abeam

Y (X;Y ) = 0;

Abeam
z (X;Y ) =

v0

c2
�beam(X;Y ): (4)

The electric part of space charge assumes to be only transverse
in respect to the reference trajectory, Ebeam = �grad(�beam);
the magnetic oneBbeam = rot(Abeam) – azimuthal.

If particles are distributed according to the Boltzmann–
Maxwell statistics and the decomposition of �beam is limited by
the polynomials of the second degree, charge density of a beam
�(X;Y ) has the Gaussian shape on every elementary length l.
It’s known that particles of a beam aren’t in equilibrium, but us-
ing of the Gaussian distribution is often suitable for its descrip-
tion [5]. And, as it will be shown below, such simple “step by
step” scheme to calculate space charge gives positive results.

The magnitude of �beam on given elementary length at some
point (x0; y0) of the beam cross-section is calculated with the
help of the Green function as a solution of the two-dimensional
Dirichlet problem for the Poisson equation:

�beam(x0; y0) =

Z Z
dxdy

�(x; y)

�0

�
1

2�
ln

1p
(x� x0)2 + (y � y0)2

; (5)

where, �0 is a dielectric permittivity of free space.

IV. ALGORITHM TO DESCRIBE A BRIGHT
BEAM DYNAMICS

So, the general scheme to describe a bright beam dynamics in
external field is the following. The initial cross-section of a beam
is being represented as a set of the test point particles. Their
transverse coordinates and momenta satisfy the Boltzmann–
Maxwell distribution. Time coordinates are the same for all test
particles and for the reference one. The energy of an arbitrary
test particle differ from the reference particle energy on the quan-
tity

�P i
T = c

q
(p0z)

2 + (P i
X )2 + (P i

Y )
2 +m2c2

�c
p
(p0z)

2 +m2c2:

According to (5) we find numerically values of �beam at the
knots of a spatial net, that cover the cross-section of a beam,
computing the two-dimensional integral by the Gauss method.
Then we approximate �beam(X;Y ) andAbeam(X;Y ) from (4)
by the homogeneous polynomials of the fourth degree, substitute
them into the Hamiltonian (1) and receive expressions for Hm.
Solving numerically the system of three matrix differential equa-
tions by the Runge-Kutta-Merson method, we determine transfer

mapM in obvious form for every test particle. These operators
are used, we find coordinates and momenta of the test particles at
the end of the first elementary length. Computing the mean val-
ues and dispersions of the transverse coordinates and momenta,
energy spectrum, we obtain the initial data to execute test par-
ticles on the next elementary length of the interaction channel.
Repeating the procedure for calculating space charge potentials
and transfer maps we carry out computations on the following
steps.

The scheme described above is an algorithm for computer
code TRLIE. This code calculates a bright beam characteristics
when it is passing through a set of magnetic focusing elements.
Verification of this code was carried out by comparison with
the results of the tests having executed by codes TRANSPORT
(without space charge effects) and CHARLIE4F (with space
charge effects) [4].

V. EXAMPLE: HIGH CURRENT BEAM IN
MAGNETIC FIELD

Let’s consider as a simple example the results given by TRLIE
code, when the beam is placed at the homogeneous longitudinal
magnetic field. They were obtained for the beam with current
1 kA, initial radius 2; 5 cm, initial divergence of the transverse
momenta of 1 % from the reference particle momentum at the
magnetic field induction magnitude 100 Gs for the different ki-
netic energy values of the beam.

On fig.1 the beam radius evolution is shown. Obtained oscilla-
tions of a beam boundary can be identify with the surface waves
in plasma with the parameter of inhomogeneity r0 , that is re-
strained by the external longitudinal magnetic field. The disper-
sion equation for axial symmetrical modes [7] gives the follow-
ing expression for spectrum of this long-wave oscillations (fre-
quency ! is not exceed plasma frequency !L) :

!2 = k2
!2

Lr
2

0

2
ln

1

kr0
(6)

In the table 1 magnitudes of the wave number k and the fre-
quency w of the surface wave obtained by the code and the fre-
quency ! calculated according to (6) are represented. It is ob-
viously, the results of simulations are in good agreement with
known facts from plasma physics.

VI. CONCLUSION
The description of a bright beam dynamics, accomplished

above, can be applied for any flows. There is no restriction of an
energy or current density of a beam. The validity of suggested
method is limited by the paraxial approximation in sense of the
accuracy to decompose one-particle Hamiltonian on the polyno-
mials close to the reference trajectory.
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Figure. 1. Beam radius evaluation.

E , keV k , m�1 ! , sec�1 w , sec�1
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Table I

Characteristics of the surface waves in a beam and plasma.
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