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I. INTRODUCTION

The foundation of the beam perturbation formalism
was established on the Sacherer integral equation [1]. The
original solution was obtained by using simplified radial
functions, and the results can be used to explain several
important beam instability problems. To solve the instabilities
caused by high beam intensities calls for more complete
solution and the extension to the formalism as well. For the
non-coupled perturbation problem without frequency spread,
two different eigenvalue type solutions were proposed. The
formalism is also modified to solve the azimuthal mode
coupling instability and the beam instability with synchrotron
frequency spread, where both dispersion type and eigenvalue
type solutions were proposed. In this article, a brief review of
longitudinal perturbation formalism based on Sacherer integral
equation is given. Some perspectives will also be discussed.

II. SACHERER INTEGRAL EQUATION

At the low intensity regime, the azimuthal mode
coupling can be neglected, and the Sacherer integral equation
is written as [2-4],

whereω is the coherent frequency shift, m is the azimuthal
mode number,ωs is the synchrotron frequency, and R(m)(r) is
the radial function defined on the amplitude of oscillation, r.
The scaling factorξ is defined asξ=2πIo/(V cosφs), where Io
is the average beam current,φs is the synchronous phase and
V is the total RF voltage. The weight function is defined as
W(r)=-dψo/(dr.r), whereψo is the stationary particle distributio-
n. Z(p) in (1) is the impedance with p representing the
frequency samplings. The Hankel spectrumΛ (m)(p) is related
to the radial function by,

where Jm(pr) is the mth order Bessel function.

2.1 Sacherer's Solution

The equation (1) is an eigenvalue problem, which has
two unknown variablesω and R(m)(r), and therefore, cannot be
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solved straightforwardly. To get approximate solutions,
Sacherer assumed simplified modes, for example sinusoidal
line densities, and solved the equation [1]. The result is very
useful in many applications. For high intensity applications,
more exact solution is needed, which appears to be in two
different forms of eigenvalue problems.

2.2 Solution Using Orthogonal Polynomials

Using orthogonal polynomial expansion of radial
modes is a conventional approach in treating an integral equa-
tion such as the Sacherer's. For the weight functionW(r), a set
of normalized orthogonal polynomialsfk(m)(r) can always be
found. The radial function can be expanded on these
polynomials as,

and the Bessel functionJm(pr) can be written as,

where the Hankel spectrum of the orthogonal polynomial is,

After some manipulations, the equation (1)can be written as an
eigenvalue problem [4],

with the eigenvector (m) = [α0
(m) . . . αk-

(m)]T wherek
-

denotes
truncation and the superscriptT denotes transpose. Thek,lth
element of the system matrixM (m) is,

In solving ( -m s) I - M (m) = 0, the eigenvalues can be
found. A similarity transformation can be applied to the ma-
trix M (m), which yields both the eigenvalues and eigenvectors
simultaneously. If we take only the first orthogonal polyno-
mial, then (6) becomes a scalar equation. The solution ob-
tained under the conditions such as a long bunch and narrow-
band impedances is comparable to Sacherer' solution using the
simplified model, with only small differences.

2.3 Solution Using Handel Samplings

Another eigenvalue type of formalism in solving (1)
is as follows [5],
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where represents Hankel har-
monic samplings, and the p,qth element of the system matrix
K (m) is,

To find the relation between the two approaches, we write the
impedance matrix as,

and the Hankel spectrum matrix,

then we get,

Note that we have By left multiplying
to (6), we have,

which is the same as (8).
To compare the two different eigenvalue problems, we

note that the dimension ofM (m) is determined by the number
of orthogonal polynomials, and the dimension ofK (m) is
determined by the frequency harmonic number. In general, the
dimension of the latter is larger than the former, but the
computational load is about the same. The calculation of
Kp,q

(m) of (9) does not require the truncation ink, and therefore
it can be more accurate. On the other hand, sometimes Mk,l

(m)

can be directly calculated on the line densities, avoiding the
truncation onp [4].

III. MODE COUPLING

When the beam intensity increases, the coupling
between the azimuthal modes can no longer be neglected. The
equation (1) becomes,

This equation can be solved as either an eigenvalue problem
[6] or a dispersion relation problem [3].

3.1 Eigenvalue Type Solution

To be not overwhelmed by large dimensions, we only
consider the coupling betweenm andm',which can be easily
extended to include any and all necessary modes. Using
orthogonal polynomial expansion, the following equation is
obtained.

where thek,lth element inM (m,m′) is,

The equation (16) is formally an eigenvalue problem. It is
noted that in general the orthogonality between the polynomi-
als of the different azimuthal modes is not guaranteed. Since
the polynomials of the azimuthal modem is further modulated
by the rotation factorejm , which itself is orthogonal form, the
orthogonality between the polynomials in different azimuthal
modes is implicitly implied, and therefore (16) can be treated
as an eigenvalue problem.

The coupling between the modes m =±1 in fact is the
same problem the conventional Robinson approach han-dled,
which leads to the well known second Robinson criterion. The
following is a brief comparison between the two approaches.
In the Robinson approach, only the fundamental modes are
concerned, the impedances are considered in a form of second
order transfer function, and the particle distribution is only
reflected in the ratio of the beam DC current and the
fundamental current. In the mode coupling approach, more
than fundamental modes are included, the impedances are
considered with the real and imaginary parts, and the particle
distribution is used in the calculation. Examples can be found
to show that the mode coupling is a more reliable treatment of
the problem.

3.2 Dispersion relation Type Solution

The following equation is derived from (15), similarly to (8),

Dividing (18) by -m s and summing overm, we get an
equation for the azimuthal mode coupling,
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Because of the denominator on the right side of the equation,
it is clear that (19) is a dispersion relation type equation. To
find the relation between the dispersion equation (19) and the
eigenvalue problem(16), we move the factor (-m s ) in the
equation (16) to the right side, then multiply from the left by

.

IV. FREQUENCY SPREAD EFFECT

Taking the synchrotron frequency spread into con-
sideration, we write where is the
synchrotron frequency at the beam center, and the frequency
dispersion functionD(r) represents the dependence of the syn-
chrotron frequency on the amplitude of oscillation.

4.1 Eigenvalue Type Solution

Substituting into (1), moving to the
right side, and using orthogonal polynomial expansion, we get
[2,7],

whereN(m) is called the frequency dispersion matrix, whose
elements are,

Note thatM (m) is proportional to the beam intensity, therefore,
at very low intensity, the system is dominated solely byN(m).
This matrix is real and symmetric, which decomposes the
original system into several lossless resonators with slightly
difference inherent oscillation frequencies, and introduces no
instability mechanism. When the beam intensity increases, the
matrix M (m) becomes dominant, and the system shows the
stability or instability. The transition of the two different
status shows the property of Landau damping. The equation
(20) can be used for study of Landau damping in the process
of antidamping, damping, and the combined situation, with a
reasonable computational load [7]. To include mode coupling,
is substituted into the equation (15). The result is shown to be
the same as (16), except the following matrix is used as the
system matrix,

4.2 Dispersion Relation Type Solution

The equation (20) can also be solved by the dispersion
relation [8]. Substituting into (1) and moving

to the right side, we get,

where the elements of the matrix A(m) are,

This matrix shows the dispersion relation. By carefully
handling the singularity problem, the solution for any mode of
each azimuthal mode can be obtained. To reach a
comprehensive solution including all necessary modes seems
to be difficult.

V. DISCUSSION

For all previously treated problems, eigenvalue type
solutions exist, which provides convenience in the calculation,
and also physical insight into the problem. The synchrotron
frequency spread alone doesn't generate coherent motion, when
the beam intensity increases, however, the feedback force
becomes effective and an eigenvalue equation can be used to
approximate the system by several subsystems. The conver-
gence is guaranteed, and for most impedances the required
expansion dimension is not large.

If the effect of the stationary beam distribution cannot
be neglected, the formalism has to be revised. One approach
[9] is to use the meshes in the r direction, which itself is an
orthogonal basis. This method is straightforward but the
computational load is drastically increased. It is of interest to
search for more efficient methods.

Various formalisms and the related solutions of the
perturbation have been briefly reviewed. All formalisms have
applications under certain conditions, and also all are subjected
to limitations. These conditions and limitations need to be
clearly specified.
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