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Abstract

Current Booster lattice is studied in the context of full
chromaticity compensation in the presence of the sextupole
fields generated by the combined function magnets. The
sextupole excitation at various energies, found from
chromaticity measurements and Booster lattice analysis, was
compared with magnetostatic multipole calculations. Both
results agree very well and they are consistent with the
original design specifications. Two families of correcting
sextupole magnets are employed to compensate the sextupole
excitations and to adjust the chromaticity (in both planes) to a
desired value, which is set by head-tail stability consideration.
Analysis of the required correcting sextupole strengths is
carried out along the momentum ramp with the measured
sextupole excitations of the combined function magnets. The
results of our calculation give quantitative insight into the
requisite performance of the sextupole magnets. It calls for
much stronger sextupole strengths − at the level which can no
longer be supported by the present correcting sextupole
magnet design.

I. INTRODUCTION − BOOSTER LATTICE

The Booster lattice is made up of 24 identical FDOODFO
cells: horizontally focusing magnet − short drift space −
horizontally focusing magnet − horizontally defocusing
magnet − long drift space − horizontally defocusing magnet,
provides room for the RF cavities within the standard cells.
Since the lattice half-cell is not symmetric, the beam size is
different in each magnet and, consequently, the focusing
strengths of F and D combined function magnets are different.
The magnets are assembled in 48 modules . Apart from the F
and D magnets, each module consists of a choke, a capacitor
bank, an ion pump, a set of correction magnets and a beam
position monitor. Two trim correction magnet packages are
placed in each period. Each package contains a horizontal
dipole, a vertical dipole, a quadrupole and a skew quadrupole.
There are also two families of correcting sextupoles, but they
are not considered a part of the correction packages. All
Booster corrections elements are air core magnets.

The nominal betatron frequencies in the horizontal and
vertical planes are ν h = 6.7 and ν v = 6.8, respectively.
Therefore, there are no second or third order structure
resonances adjacent to the working diamond. The lattice tunes
are set by the quadrupole strengths of the combined function
magnets (focusing and defocusing).

As we will show in this study, more sextupole field is
needed to compensate the net chromaticity to the desired level
set by head-tail instability present in the Booster. This calls
for either stronger sextupole magnets, or for larger number of
correcting sextupoles. Both options are explored here.

Possible performance improvement of the present air core
sextupole magnet (enhanced sextupole strength) can be
achieved by surrounding a sextupole magnet with an iron shell
(to decrease the reluctance of the exterior magnetic path). The
maximum enhancement level is estimated using magnetostatic
calculation assuming an infinitely thick shell. The second
option − putting additional sextupole correctors at various
new locations, which have recently opened was also examined.
Both options of stronger sextupole compensation were studied
from the point of their impact on the dynamic aperture. No
significant second order distortions effects were found, which
supports our claim that one can safely add more sextupole
field.

II. BOOSTER CHROMATICITY

The integrated sextupole strength, g, of an individual
sextupole magnet of length L, in Tesla/m is introduced as fol-
lows
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where x, x' are generic coordinates of a transverse phase-space.
Here Boρ is the magnetic rigidity and B'' is the second
derivative of the vertical magnetic field with respect to x.

Apart from two families of correcting sextupoles, there
are also additional sextupole fields contributed by the 96
combined function magnets (F and D). The sextupole
contribution from a combined function magnet is due
primarily to pole geometry and remanent magnetization.
Detailed numerical modeling of the multipole content of the F
and D magnet geometries is presented in the next section.

For the purpose of our model, the sextupole content of
each F and D magnet can be accounted for in the Booster
lattice by inserting identical zero-length sextupoles at five
equally spaced locations along each magnet. Significant
variation of the horizontal and vertical beta functions along
the F or D magnet calls for distributed sextupole contribution,
rather than a lumped sextupole inserted at the middle of the
magnet.

The goal of the two families of sextupoles (h and v) is to
compensate the natural chromaticity, _χo, in the presence of
the F and D magnet sextupole excitations, SF and SD, to some
desired value, _χ. Assuming that the net chromaticity (in both
planes) depends linearly on four independent sextupole sources
(Sh, Sv, SF, SD ) one can quite generally write down
chromaticity in terms of eight sensitivity coefficients. Using
matrix multiplication this relationship assumes the following
compact form
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Here, the underlined symbols denote 2-dim column vectors
(their components correspond to the horizontal and vertical
planes). The bold face characters, M and D, represent two-by-
two matrices − one can easily identify the eight sensitivity
coefficients with the elements of the two matrices. One can
notice in passing, that both M and D depend exclusively on
the lattice properties. A generic sensitivity coefficient can be
expressed in terms of the Twiss functions according to the
following relationship
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Here, the summation i(ν ) goes over locations of all
sextupoles of a given family (ν), where βµ

i and Dµ
i are values

of the beta function and dispersion at those locations (µ
indicates either horizontal or vertical Twiss functions).

Solving Eq.(3) with respect to the correcting sextupole
strengths _g (in Tesla/m) yields the following formula

_g = (Boρ) M−1 
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The above expression will be used to analyze the required
sextupole strength as a function of changing momentum
along the Booster ramp. The sensitivity coefficients for all
four families of sextupoles, M and D, are simulated for the
Booster lattice using MAD tracking code [1].

To complete the sextupole strength analysis, outlined by
Eq.(4), one has to gain some insight into the sextupole
excitations of the combined function magnets (F and D) and
their variation with the B-field. This will be discussed in detail
in the next section via magnetostatic simulation for both
geometries of the F and D magnets.

Another independent way of obtaining information about
the sextupole excitation of the combined function magnets
comes from the beam measurement. Using available
chromaticity measurement [2] with both families of correcting
sextupoles (h and v) turned off, one can calculate the sextupole
excitations of the F and D magnets at various energies along
the ramp. This information could be recovered by solving
Eq.(2) with respect to SF and SD. The corresponding
expression is given below:
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III. SEXTUPOLE CONTENT

The bending guide field in the Booster synchrotron is
provided by 96 combined function magnets, each

approximately 3 m long. The magnetic field varies from
approximately 500 Gauss at injection up to 7000 Gauss at
extraction. The magnets are powered in a resonant circuit by a
15 Hz sinusoidal waveform resulting in a field of the form [3]

B(t) = Bmin + 
1
2 ( )Bmax − Bmin  [ ]1 − cos(ωt)    . (6)

Calculations were performed using a standard finite
element code (PE2D). The results confirmed the design dipole
and focusing strength. Furthermore, higher multipole values
(up to the 24-pole) were also calculated for both F and D
magnets. The multipoles are normalized values at 1 inch. For
the D magnet, the calculated dipole field was 6.65239 × 102

Gauss with an excitation of 1518 Ampere-turn and 6.18884 ×
103 Gauss for an excitation of 14145 Ampere-turn. For the F
magnet, 8.31474 × 102 Gauss for 1384 Ampere-turn and
7.68313 × 103 Gauss for 12900 Ampere-turn.

The Booster magnets are operated well below saturation
and not surprisingly, the calculations show that there is no
significant dependence of the field harmonics on the excitation
current. The magnitudes of the dipole and quadrupole
components of the field are in excellent agreement with the
design values. As explained before, the sextupole component
of the bending magnet magnetic field can be extracted from a
beam-based chromaticity measurement. The beam-based
(measured) [2] values of b2 in [m−2] are listed as: 2.0 × 10−5

for the F magnet and −6.9 × 10−5 for the D magnet. One can
see that the calculated sextupole components at 8 GeV are in
good agreement with the values inferred from chromaticity
measurements. The distinctive characteristic of the remanent
magnetization contribution is that it tends to be relatively in-
dependent from the excitation. Therefore, when normalized
with respect to the main field, the relative contributions from
the remanent magnetization to the magnetic field are expected
to gradually be reduced to zero as the excitation current is
increased from its minimum to its maximum value.

IV. POTENTIAL IMPROVEMENTS TO AIR
CORE SEXTUPOLES

It has been suggested to increase the strength of the
existing air-core chromaticity correction sextupole magnets by
introducing an external iron shell. The field enhancement
effect due to an iron shell can be estimated by using the
following result: for a filament of current located at (ρ, φ)
inside a circular hole of radius R carved into a medium of
relative permeability µ the complex coefficients Cneiαn − the
multipole expansion of the field are given below [4]
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For a pure sextupole current layer of inner radius a and outer
radius b, with a uniform current density given by

J3(ρ,φ) = J3 cos3φ (8)



one can easily carry out the integration in the right hand side
of Eq.(7), which reduces to the following simple expression
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Under ideal conditions, i.e. µ = ∞ (µ is about 100 for iron)
and a = b = R, the sextupole field could be doubled. More
realistically, let a ≈ b < R and t = b − a << R. The above
expression becomes
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It is probably unrealistic to expect an enhancement factor
larger than 1.5 in a real device. We note that because the
exterior field decays faster as the pole number increases, field
enhancement with an iron shell is less effective for a
sextupole than for a dipole magnet.

V. HEAD-TAIL  INSTABILITY  LIMITS

Following Sacherer's argument [5] the inverse growth-
time as a function of chromaticity was evaluated for different
slow head-tail modes (l = 0, 1, 2, 3) The l = 0 mode appears
to be unstable above transition for small negative
chromaticities and might lead to significant enhancement of
coherent betatron motion. The obvious cure to stabilize the
dipole mode [6] is to maintain appropriate sign (positive) of
the net chromaticity. Otherwise, this potentially offending
mode can be effectively suppressed by the active damper
system. This efficient cure for the l = 0 mode obviously does
not work in case of the higher modes, since its feedback
system picks up only the transverse position of a bunch
centroid, which remains zero due to the symmetry of the
higher modes. Another possible cure especially effective for
the l ≥ 1 modes would involve the Landau damping, e. g.
through the octupole-induced betatron tune spread. Increasing
betatron amplitude of initially unstable mode causes increase
of the tune spread, which will eventually self-stabilize
development of this mode. Therefore, presented head-tail sta-
bility analysis suggests adjusting the net chromaticity at −7
(+7) units below (above) transition energy.

VI. CONCLUSIONS − SEXTUPOLE STRENGTH

Our analysis of the required correcting sextupole
strengths, carried out along the momentum ramp with the
measured and simulated sextupole excitations of the combined
function magnets, concludes that maintaining the net
chromaticity at the level set by head-tail instability limits
requires much stronger sextupoles. The required sextupole
strength is at the level, which can no longer be supported by
the present correcting sextupole magnet design. One has to
consider either a new iron core sextupole magnet design, or
the upgraded air core magnets placed at all accessible high beta
locations − the ‘enhanced’ sextupole layout, which is
proposed in this paper. Quantitative assessment of the effect

of the stronger compensating sextupoles on the dynamic
aperture, carried out in terms of the distortion functions shows
that the requisite sextupole configuration would not
significantly enhance the third order resonance stop-band − the
dynamic aperture remains at acceptable level.
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