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An electron beam pre-modulated at the fiestity ina ||. TWO BEAM KLYSTRON
klystron enters the secomavity opening, exciting it. Induced
voltage at the second cavity inhayh-power klystron forms a High-level stable excitation of the firsavity is very
virtual cathode momentarily, sending bacpaat of the beam jmportant for current modulation in a high-performance klystron.
toward the first cavity. The relationship between the induceghe first cavity is excited first bgxternal input microwaves,
voltage and the return current at the faavity is investigated. \yhich have enougbulse length, saturating the induced voltage to
The boundary between the amplifier and oscillatperation  the steady-state valge, Sometime during this microwave pulse,
regions is described in the parameter space defined by the refHen electron beam is allowed to enter the klystron. The

current strength and inter-cavity distance. relationship between the induced voltage and the ac return current
in the first cavity opening can be found from an equivalent circuit
[. INTRODUCTION representation of the cavity impedanceg L, C and R. The

inductance L and capacitange C are related to the resonance

There is a growingody ofliterature on theoretical and frequency, of the cavity by, = (L,C,)** and the cavity Q-value
experimental studies of relativistic klystron amplifiers driven bip related to the resistancg R of the equivalent circuif by Q =
modulated intense relativistic electron beams. The relativisti.C, (Ref.2). The resonance frequengyof the first cavity is
klystron amplifier (RKA) exploits the strong self-electiild, assumed to be in resonance with the input microwave frequency
which effectively modulates the beam current, thereby enhancify, @1 = @. The intensity of the return current is unknown.
electron bunching and amplifiefficiency. The frequency and However, the level of the return current modulation increases as
efficiency of the current modulation in a RKA are monochromat@mplituded, of the induced gap voltage at the second cavity
and almost 100 percent in appropriate system parameters. On@@eases. Note that the amplitugle is proportional to the
the main issues in present RKA development is the enhancenféfplituded of the induced voltage at the first cavity. In this
of power and frequency simultaneously. The size and openind®gard, we assume that the return current modulation is
the cavities in RKA should be reduced, to increase the excitati@ieportional to the amplitutg of the induced voltage at the first
frequency. Therefore, a high-power high-frequency klystrgfaVvity.
amplifier has inherenproblems due to reducechvity size, Collecting all terms together, the induced gap voltage
including electron emission and ac beam loadingaaity gap V() at the first cavity can be calculated from
opening. However, if the induced voltage at the second cavity isdgv dv.
high enough, it forms a virtual cathode and reflpets of the 1, 1 % Vv, = 1 ,Sin .
electron beam back to the first cavity. The return beam from thedx 2 Q dx (1)
second cavity enters the first cavity opening and excites it further
if the return current modulation is in phase with first cavity +f o(x)sin[ x-%(x) +da],
excitation. The in-phase return-current modulation may reduce the
ac beam loading at the first cavity, significantly improving the
klystron performance. As a proof-of-principle experiment, Serlifhere { represents thetensity of the return current and other
and Friedmah built the two-beam Klystron, where two annul§PUpling mechanisms, the variable x is the normalized time
electron beams propagate through a grounded tube. These bélgfiged by x =wt, and the phase angieis related to the inter-
are pre-modulated at the firsavity by input microwaves. cavity distance L by
Because theaner beam energy is considerably less than the outer oL, 1 1
beam energypart of the inner beam is reflected by the virtual < ~ Y3~ T( B " B,
cathodeformed at the second cavity and furtbgcites the first ! 2
cavity. Significant improvement of the current modulation has
been reportedrom this experiment. A theorglescribing the N Ed. (2),p,c andp,c represent velocities of the forward and
relationship between the induced voltage and the modulated refe@gkward beam¥], is the phase shift of the induced voltage at the
current at the firstavity opening isdeveloped. Boundaries Second cavityelative to the forward current modulation, aihd
defining the amplifier and oscillator Operation regiam also is the phaSShrﬁ of the return current due to reflection at the
described in terms of the normalized return-current strength h affgHal cathode. IiEq. (2), the term proportional §g, represents

the inter-cavitydistance represented by the phase ang|e the contribution from the input microwaves and the term
proportional to § originates from the incoming return current. In

obtaining Eq. (2), we have assumed that the induced gap voltage
This work was supported by IR Fund at NSWC V(1) is expressed as

Vi(t) = o(x)sin[ x-w(x)], 3)

) -, (2)




whered (x) and¥ (x) are amplitude and phase shift, respectively,  shift. It is important to find in what parameter regime the steady-
of the induced voltage at the first cavity. They are slowly varying  stateqéaduarger tharunity. The modulated return current
functions of time x. We assume that the input microwaves and amplifies the induced oolagethis parameter regime.
modulkted return current drive the excitation of the fimtity, —Othewise, the return current dampens the induced voltage. To
which accommodates the driving sig;mby changing its amplitude find boundary of the amplifying region, veebstitutey = 1 into

and phase. Thus, selecting the time frame in which the phaseisa Eg. (7) and obtain

non-zero value 6F (x) as shown in Eq. (3) is quite appropriate in

. . cos ¥, + hcos a = 0,
the subsequent theoretical analysis.

Substituting Eq.(3) into Eq. (1),and defining the sin v, + hsin o = 1. ®)
normalized amplitude Y and normalized time y by
= o(Y) o, y =x2Q = otl (4)

We remind the reader that the phase #hjfsatisfies si¥, > 0 for
x > 0. After a straightforward algebraic manipulation, Eq. (8) is
we find the equations which govern the pHesand amplitude Y.  expressed as h = @dor O <a < 7. Note that the value of the

They are parameter h in Eq. (8)at /4 or ate = 3n/4 is 2>, The curves
dv COS @ obtained from h = 2sinrepresent the boundary of the amplifying
dy Ty hcos « (5) region in the ¢,h) parameter space. For a specified value of the

normalized return-current strength h, @maplifying region is
defined by

and

4y sin "I( g) < a < m-sin g), 9)
' + (1 —-hsin o) Y =sin v, (6)

where h is less thart2 . To investigate transient behavior of the

where the normalized return-current strengthdefsned by h = riduced voltage Y (t), we solve the coupled differential equations
fQ.. Although theparameter f is a small number, the normalized  (5) and (6) numerically. As expected, we find from the numerical
return-current strength h caasily be on therder ofunity calculation that the amplitude Y and phase &hifipproach their
because of a large cavity-Q valuefdBe solving Egs. (5) and (6), steady-state values as timebgo8she closer the steady-state
we assume the initial condition that at time y = 0, the electron litaseto unity, the quicker the transient behavior dies out. In
beams enter the system, thereby turning on the terms proportional  the limit of thre=am@ewe note ®/dy = 0 from Eq. (5), and
to hin Egs. (5) and (6). Otherwise, the cavity is saturated by the  Eq. (6) is simplified to
microwave input at y < 0 and the initial conditions forghase dy
and amplitude are given by c#¢p)] =0and Y(0) =sif(0)] 7 * @-ny-1, o= . (10)
aty=0. These conditions are equivalently express¥d-as/2
andY =1aty=0. After a careful examination of Egs. (5) and (6),
we note the functional properties ofi¥¢) = Y(e) and¥(n-¢) =  Solution to Eqg. (10) is given by
n - ¥(e). Therefore, the amplitude Y and phase &hifor ¢ = n- 1
e, can be expressed by thosedor o.,. Y- 15 {1-hexp[ -(1 -h) yl}, (11)

The homogeneous solution, Y to E@®) increases
exponentially,provided hsin > 1, which is called the self-
excitation. On the other hand, when the phase angigisfies which eventually saturates to ¥y = 1/(1-h). Themaximum
hsinx < 1, the solution Y to Eq. (6) is bounded and the klystron is  amplification of 1/(1-h) ocewsi&2, which is called the in-
the amplifier operation region. The boundary between the phase condition. The steady-state amptitufeintreases
amplifier and oscillator regions in the, ) parameter space can imdinity as thestrength h approachesityn This observation
be illustrated and the border line is obtained fromehsia. may mislead the outcome of practical present experiments. When

Amplifier Operation: In the amplifier operation region - h, Eq. (11) is further simplified to Y = 1 +y, which increases
characterized by hsin< 1, the solution Y to Eq. (6) is bounded, linearlyin time. Therefore, amplificationfay2 and h =1 is
and the steady-state values of the amplitude Y and phasdimited by the electron beam pulse. In the out-of-phase case
induced at the first cavity openirage determined by¥ddy = characterized by = -n/2, the solution to Eq. (6) is given by

dY/dy = 0 at the time y =. Thus, after a straightforward 1

calculation, we obtain ‘= m{1 +hexp[ -1 +h) y]}, (12)
cos ¥, + xhcos a = 0,
sin ¥, + xhsin o = x, ) where the return current dampens significantlyghe voltage

induced by the microwaves.
Oscillator Operation: Itis pdied out that Eq. (1) for the
for amplifier operatiorfrom Eqs. (5)and(6). In Eq. (7),x = induced gap voltage at the ficgtvity is alinear equation, which
¢.,/d,, and¥, are steady-state values of the amplitudepdnae  is an excellent representation for an amplifier operation. However,



mentioned earlier, the amplitude Y iBq. (6)increases

in terms of the phase anghnd the cavity Q-value.

The in-

exponentially in the oscillator operation region satisfyingeshsin phase condition af = (0.5 - 2n}, at which the modulated return

1. In reality, the term proportional to the parameterEqn(1),

which represents the modulated return current, may stop to grow
For example, th¥, are known. Here, n is an integer. When segments of the

as the amplitudeb approaches saturation.
location at which the maximum current modulation of the forward

beam occurs, starts to shift toward the first cavity from the second
current may be very close to the phase of the induced voltage at the
second cavity. We #psroximate?, = n/2. According to a

cavity location, if the amplitudep increasessignificantly?
Remember that the second caldtyation was initially selected for

current is in phase with the first cavity excitation, can be expressed

in terms of the inter-cavity distance L, once the fihasedshifts

forward beam arrive on the second cavity, a certain limited portion
of the lidmefiected at the cavity. The phase of the return

a maximum forward current modulation of moderate ampligude previous study, the optimuourrent modulation occurs at the

Once the maximum modulation locatistarts toshift, the term
proportional to f in Eq(1) does not increase linearly withy
instead, it maystart to saturate. We also observe that the
modulated return current originates from reflection at the second
cavity. As long as theturn current is much less than the forward
beam current, it may be proportional to the excitation level of the
secondcavity, which is alsoproportional to the first cavity
excitation. This assures linearity in Eq. (1). If the return current
is a substantial fraction of the forward current, due to lack of a
sufficient amount ofhe forward current, it may start to saturate as
the cavity excitatiorincreases. Themmay beother saturation

phase shift satisfying @s < n/2. We assum¥ , = /4, which
is the value corresponding to the middle in the allowable range of

the fhas€he error associatedth this assumption is one-
sixteenth of the wavelength or less in the klystron. Substituting

these phase shifts into Eq. (2), the in-phase condition is simplified
to

1y .1
B_2) -@n P

Lw, 1
<5 (16)

The smd cavity should be locatedhere the forward current has

mechanisms for the modulatezturn current as the amplitude a maximum modulation. The second cavity location is therefore

of the induced voltage grows. In this regard, Eqgs. (5) and (6) for
the oscillator operation are modified to
ov
dy

COST . h(1 -eY?)cos a,

. (13)
7 [h —eY?)sin «-1] Y = sin

determined in terms of the beam parameters and geometrical fact

G. Maximum modulation location is gi¥en by

Y1

2vG

2 21IIC

zZ, = BlylZ_o) (17)

wherey,? = (1$,)™ andv is Budker's parameter of the forward
beam. As a numerical example, we consider the physical

where the nonlinear saturation coefficieris much less than unity
in a typical klystron. Equatiofil3) is atypical van der Pol
equation for a forced oscillator. Obviously, the terms proportional
to eY? in Eq. (13)provide a saturation of the amplitude. The
normalized saturation amplitude Y is obtained from Eq. (13) and
is given by

hsin o-1
Y = | ——— =,
S e hsin «a

which is typically muchlarger thanunity, i.e., Y, >> 1. As
expected fronktg. (11),the maximum amplitude of the induced

(14)

parameters of the two-beam klystron expériment at the Naval
Research Laboratory. The theoretical fesulEqgs. (16) and

(17) predicts the optimum inter-cavity distance L = 14 cm, which

is close enough to the experimental observatidd df tne.

We also ofveemtéis numerical example that a deviation of

about 13 percertl{ = 2 cm) from 14 cm results in a significant
reduction of the current modulation, which also agrees with the
experimental observation.
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