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Abstract

The phase space area plays an important role in determining the
performance of optical stochastic cooling. Specifically, thenum-
ber of samplesin thebeam consists of three factors correspond-
ing tothree dimensions, thefactor in each dimension being given
by theratio of thetotal phase space areain that dimension to the
radiation wavel ength.

|. INTRODUCTION

In microwave stochastic cooling [1], the maximum cooling
rateislimited by the number of particlesn; inaso-called “sam-
ple”, defined to be the subset of particlesthat can interact witha
given particlethroughthe pick-up—amplifier—kicker system. The
signal from the particlesin the sample, other than that from the
particleitself, contributeto the heating term. A smaller value of
n; therefore leads to a faster cooling. If the bandwidth of the
pick-up—amplifier—kicker system is denoted by W, n; is given
by the well-known relationship
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e = o (@D}
Here, n is the total number of the particles in the beam, ' =
TW, and 7" isthe time duration of the beam. Equation (1) isthe
statement that the signal dueto a given particle appearing at the
kicker lastsabout 1 /177, and hence only particleswithinthat tem-
poral distance can interact with the given particle. The quantity
I isreferred to as the number of the samples contained in the
beam.

Recently, optical stochastic cooling was proposed to take ad-
vantage of the larger bandwidth possible with amplifiersin the
optical wavelength region, which could beashighas 103 —1014
Hz [2]. Thus the sample size n, and hence the cooling time,
would be greatly reduced. A quadrupole undulator and a nor-
mal dipoleundulator respectively play theroleof the pick-upand
the kicker in the original scheme in reference2]. However, the
requirement on the beam emittance in that scheme turns out to
be very stringent, being about Ao s or less, where A isthe wave-
length of the radiation used for the cooling and o is the rms
relative energy spread in the beam. The transit time scheme of
optical stochastic cooling was proposed to avoid this limitation
[3]. In this scheme, normal undulators are employed for both
the pick-up and the kicker, and the information on particle cood-
inatesistransmitted viathe coordinate-dependent transit time of
the particle trgjectory between the pick-up and the kicker undu-
lators.

The purpose of this paper is to study the effect of the trans-
verse structure of the radiation field on the cooling performance.
To this end, we analyze the transit time scheme of the optical
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stochastic cooling in detail, using an approximate model for the
undulator radiation to represent the space-time dependence of
the undulator field [4]. Our main finding is that the number of
samples in the beam I’ can be written as

F = F Fpg Fry, 2
where F;, and Fip,. (Fry) arereferred to respectively asthenum-
ber of the longitudinal and the transverse samples in the x(y)-
direction. We find that the number of the samplesin each dimen-
sionisgiven by the ratio thetotal phase space areato the coher-
ent phase space area A.

The relevance of the transverse structure of theradiation field
in optical stochastic cooling wasfirst pointed out in reference] 3]
based on an intuitiveargument. However, the expression for the
number of the transverse samples conjectured there-the ratio of
the beam sizeto the coherent mode size—isvaid only inthelimit
of parallel beam.

The expression for 7y, as the ratio of the total longitudinal
phase space area to the coherent phase space area A reduces the
usual result 7'W inthelong bunch limit. Intheshort bunchlimit,
however, F;, becomes the ratio of the beam energy spread to
the coherent energy spread. This could have interesting conse-
guences for the cooling of bunched beams.

1. PARTICLES AND FIELDS

Let z; and ; be respectively the position and the angle of the
betatron motion of the jth particle as it passes the center of the
pick-up undulator, and ¢; itsrelative energy deviation. The total
transverse coordinates are therefore

3)

wheren; and ’ are respectively the dispersion and its derivative
at the center of the pick-up undulator. In the following, we will
be mainly concerned with the behavior in the x-direction where
the dispersion occurs. The behavior in the y-direction will be-
come ohvious.

Followingthework in[3], we choose the betatron transfer ma-
trix between the centers of the pick-up and thekicker undul ators
to be — 1, and the dispersion function at the center of the kicker
to satisfy the symmetry relation (nx,n%) = (n,—7n'). Thus,
the transverse coordinates of theith particle in the center of the
Kicker (zx;, ¢'%;) arerelated to those at the pick-up as follows:

(4)

The path length of the particle trgjectory between the centers of
the pick-up and thekicker inthelinear approximationisgiven by

rpj; = x; + nd;, J:jpj = x; +7'é;,

! ! !
Tri = —&; +nd;, Tg; = —x; — 105
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Here, Q = nn/ + fol” dsD(s)/p(s), D(s) being the contribu-
tion to the dispersion from the dipole magnets and p(s) thera
dius of the curvature of the particle trgjectory[3]. In this paper,
the betatron focussing in the undul atorsis neglected so that par-
ticle tragjectories are straight. The trgjectory of an ith particlein
the kicker undulator can therefore be written as

(6)

The quantity zx;(¢) in Eq.(6) is the longitudinal coordinate
given by:

rri(t) = vri + 22k (), i(t) = @

zii(t) = Bi(1 4 ©%,/2)(ct — s;: — Aly), (7)

where j3; isthe speed of theith electron divided by c, ¢ the speed
of light, and s; = ¢t; the distance of the the ith particle behind
the reference particle in the pick-up undulator. Itis necessary in
EQq.(7) to keep the second order term in the expansion of cos z/,
because the leading term is sometimes cancelled out. The con-
stant term ; in the path length does not appear in Eq.(7) because
thetime? = 0 isdefined to be the moment when the reference
particle passes through the center of the kicker undulator.

To find the field produced by the jth
dectron Ep;(z; zp) exp iw(t —t;) , wherew = 2we/A = ke,
it is sufficient to note the relation at zp = 0 (the center of the
pick-upundulator), Ep;(x;0) = explika’p; (z—zp;)| Eo(x;0),
where I, isthefield of thereference particle[4]. Wewill approx-
imate Eo(z;0) = exp(—=z?/402), where o, is the rms mode
size at the waist. The field for zp # 0 isthen obtained by a
Fresndl transformation. The resulting expression isfurther sim-
plified by neglecting the »»-dependence in the spotsize and the
wavefront curvature. The result is then multipled by the factor
exp[—(z — ¢(t — t;))/40k], where s ~ NA/+/2m, N being
the number of the undulator periods. Thisfactor isintroduced to
account for the fall-off the field strength due to the increase of
the spotsize aswell asthe fact that the relative bandwidth of the
undulator radiationisabout 1/N. In thisway, we obtain

Epj(z;zp,t) = Eyexplikzp(l — x}2/2) —ik(et — s5)—
(zp — ct + s5)* 2
40’2C

(z —x; — sz})
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In deriving EQ.(8), we have assumed that the undulator band-
width, 1/N, ismuch lager than both therel ative energy spread of
the particlebeam o5 and thelinewidth dueto theangular spread,
~v2z'?, where v isthe relativigtic factor and =/ isthe angle at the
pick-up or kicker undulator.

We choose the optical ABCD
matrix for the pick-up—amplifier—kicker systemto bethe same as
that of the betatron transfer matrix, — I, with an an amplification
factor g. Thefield at the kicker Fx; isthen related to that from
thepick-upby Ex;(x,2,t) = gEpj(—=z,2,t —lo/c — As; /).
Here, z isthelongituninal coordinate measured from the center
of the kicker undulator.

[11. COOLING AND HEATING TERMS

In thekicker undulator, the energy of a particle becomes mod-
ified due to the coupling of itstransverse motion in the undula
tor magnetic field and the transverse electric field of the ampli-

+ zkx;(x —z;) —

fied undulator radiation from the pick-up undulator. The change
in the relative energy of theith particleis

K,
A(SZ =€ hi
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The complex notation for the field is used here with Im imply-
ing the imaginary part, and ¢ is the particle charge, m its mass,
K, theundulator deflection parameter, &, = 27/A,, A, theun-
dulator period length, and thetrgjectory of theith paricleis spec-
ified by Eq.(6) and Eq.(7). We are assuming that the undulator
strengthistapering out as a Gaussi an functionwith an rmslength

X exp(thyzri () — z?ﬁ/élo%).

or ~ L/V2r. Alsonotetherdaionoe = (1 — f)op =~
o1 /2~?. Performing the¢—integral, we obtain
Jj#i
where G = eg K, FoL/2mc?4?, and
202 o2 pt4
B = <7 exp {_% kAl — ik(si — 55)
Lij(2) 822']'(2)
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(2)

x exp(ipij) (11)

Here

Sij2) = \J0F + 207 /2, Bija) = JoF +xiiod
li = Atife, si=t;[c, xij=rxitap; = —vita;+n(6i+d;)
= g+ apy = —af x4+ n(=0; + ;)
The phase term ¢;; inthelast factor in Eq.(11) isared quantity
withtheproperty ;; = 0 and |¢;;| < |k(s;—s;)|fori # j. The
explicite expression of such a phase term will not be important
for the following calculations. The change in the average value
of §7 isthen

X

(AGE) = 2GIm(31®11) + n(G?/2)(®1,D%,).  (12)

Here the angular brackets imply taking the average with respect
to the variables s;, d;, x;, and ;. We assume that the distribu-
tion function in these variables can be factorized into Gaussian
functionsin each variable, with rms widthse, , o5, 0., and o..
Sinceadl particlesare equivalent, we have arbitrarily chosen two
indices, : = 1 and j = 2. Thefirst term in the above is the
cooling term. In obtaining the heating term, the second termin
Eq.(12), we have used the fact that the average of the quantity
®1;®7;, vanishesunless j = ;" because of the large, random
phase k’(Sj — Sj/).

Thecoolingterm can beevaluated in aclosed formasfollows:

4kGQo?
(L+ 27203/ 02)7?

2GIm < 61 P11 >= —
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This reproduces the expression derived in reference[3] when
nos L 0.

The heating term can be written as n,G?/2, where n, =
(@127, is the number of particles in a sample for optica
stochastic cooling. The averaging with respect to variables s;
and s, involvesGaussian integrals. Assuming for simplicity that
o, > oc,theresultis

exp {—2k2 [Ui,nz + (13)
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Therest of the averaging will be carried out approximately by
regarding thevariablesz; » and z} , tobeindependent with Gaus-
sian distributions of widths >, and X,, respectively. These
quantities will be roughly given by ¥2 ~ 202 + 2n?¢} and
2, & 202, + 2n*o?. Performing the z,-average, we obtain

(®1587,) = oc <03 exp|—(koro,z1%/2%15(2))7]
12/ —
T 212(2) 2%2(1) + E%

Y. (15)

Thefinal average inthevariable 2, can be estimated approx-
imately asfollows: First, we assume that the Rayleigh length of
the undulator radiation is about o5, so that

or & A\orL/2k, op & 1/\/2koy,

The exponentia factor in Eqg.(15) can then be written as
exp(—€&2/4(1 + €)), where & = o? 2% /202, Thus, the average
isdominated by the region ¢ < 1. For arough estimate, there-
fore, wemay set & ~ 0 everywhere except the exponential func-
tion, whichwe replace by exp(—¢2/4). Theaverage of thisterm
can be expressed in terms of the modified Bessel function Ky /4.
By examining theresult, we obtainthefollowing estimatefor the
heating term:

(16)

2 2
%n<q>12<1>;2> = %n ~ 7 A2 .
0: 2m\/(02 + 22) (02 + 32,)

(17)

Note here that the quantity /2 in the numerator is the coherent

phase spacearea2ro,.o,.. Equation (17)isthemain result of our

analysisin this paper. We consider the meaning of thisresultin

the next section.

V. THE ROLE OF PHASE SPACE AREA IN
LONGITUDINAL AND TRANSVERSE
SAMPLES
Comparing Eq.(17) and Eq.(1), we seethat thenumber of sam-

plesin the beam F for the present case isindeed in the form of
Eq.(2), with Iy, = ¢, /o, and

V(eE +32) (o], + 53))
FTx ~ .
TpOp/

(18)

This reduces the conjecture of reference [3], .. /o, in the limit
B > o, where S, isthe beta function of the particle beam
in the kicker undulator. However, note that Eq. (18) consists of
two factors, the size and the angular factors. The angular fac-
tor arises from thefact that two particleswith angular separation
larger than the coherent mode angle do not interact, and there-
fore can not both belong to the same sample.

Itis clear that n; will be further reduced by the number of
transverse samples in y-direction Fr,,, the expression of which
will be similar to that of Fr,.

The analysis of previous section gives Fy, ~ o, /o because
we assumed o, > 0. Inanaogy to the transverse samples, a
more general expression is

o 2GR T oA 1 D)
L~ A/Q )

(19)

where o5 = 1/2ko¢ isthe coherent bandwidth. In the limit
o, > oc, ocs > 05, Fr becomes the usual expression
o, /oc. Intheoppositelimit, o, <« o¢, ocs < o5, weobtain
Fr = os/0¢s. Thuswe find in this case that a faster cooling
would be achieved with a narrower bandwidth amplifier. The
implication of thisconclusion for the cooling of bunched beams
will be studied in afuture paper.
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