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Abstract

The phase space area plays an important role in determining the
performance of optical stochastic cooling. Specifically, the num-
ber of samples in the beam consists of three factors correspond-
ing to three dimensions, the factor in each dimension being given
by the ratio of the total phase space area in that dimension to the
radiation wavelength.

I. INTRODUCTION
In microwave stochastic cooling [1], the maximum cooling

rate is limited by the number of particles ns in a so-called “sam-
ple”, defined to be the subset of particles that can interact with a
given particle through the pick-up–amplifier–kicker system. The
signal from the particles in the sample, other than that from the
particle itself, contribute to the heating term. A smaller value of
ns therefore leads to a faster cooling. If the bandwidth of the
pick-up–amplifier–kicker system is denoted by W , ns is given
by the well-known relationship

ns = n
1

F
: (1)

Here, n is the total number of the particles in the beam, F =
TW , and T is the time duration of the beam. Equation (1) is the
statement that the signal due to a given particle appearing at the
kicker lasts about 1=W , and hence only particles within that tem-
poral distance can interact with the given particle. The quantity
F is referred to as the number of the samples contained in the
beam.

Recently, optical stochastic cooling was proposed to take ad-
vantage of the larger bandwidth possible with amplifiers in the
optical wavelength region, which could be as high as 1013 –1014

Hz [2]. Thus the sample size ns, and hence the cooling time,
would be greatly reduced. A quadrupole undulator and a nor-
mal dipole undulator respectively play the role of the pick-up and
the kicker in the original scheme in reference[2]. However, the
requirement on the beam emittance in that scheme turns out to
be very stringent, being about ��� or less, where � is the wave-
length of the radiation used for the cooling and �� is the rms
relative energy spread in the beam. The transit time scheme of
optical stochastic cooling was proposed to avoid this limitation
[3]. In this scheme, normal undulators are employed for both
the pick-up and the kicker, and the information on particle cood-
inates is transmitted via the coordinate-dependent transit time of
the particle trajectory between the pick-up and the kicker undu-
lators.

The purpose of this paper is to study the effect of the trans-
verse structure of the radiation field on the cooling performance.
To this end, we analyze the transit time scheme of the optical
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stochastic cooling in detail, using an approximate model for the
undulator radiation to represent the space-time dependence of
the undulator field [4]. Our main finding is that the number of
samples in the beam F can be written as

F = FLFTxFTy; (2)

whereFL andFTx (FTy) are referred to respectively as the num-
ber of the longitudinal and the transverse samples in the x(y)-
direction. We find that the number of the samples in each dimen-
sion is given by the ratio the total phase space area to the coher-
ent phase space area �.

The relevance of the transverse structure of the radiation field
in optical stochastic cooling was first pointed out in reference[3]
based on an intuitive argument. However, the expression for the
number of the transverse samples conjectured there–the ratio of
the beam size to the coherent mode size– is valid only in the limit
of parallel beam.

The expression for FL as the ratio of the total longitudinal
phase space area to the coherent phase space area � reduces the
usual result TW in the long bunch limit. In the short bunch limit,
however, FL becomes the ratio of the beam energy spread to
the coherent energy spread. This could have interesting conse-
quences for the cooling of bunched beams.

II. PARTICLES AND FIELDS

Let xj and x0
j be respectively the position and the angle of the

betatron motion of the jth particle as it passes the center of the
pick-up undulator, and �j its relative energy deviation. The total
transverse coordinates are therefore

xPj = xj + ��j ; x
0
Pj = x0

j + �0�j; (3)

where � and �0 are respectively the dispersion and its derivative
at the center of the pick-up undulator. In the following, we will
be mainly concerned with the behavior in the x-direction where
the dispersion occurs. The behavior in the y-direction will be-
come obvious.

Following the work in [3], we choose the betatron transfer ma-
trix between the centers of the pick-up and the kicker undulators
to be �I, and the dispersion function at the center of the kicker
to satisfy the symmetry relation (�K ; �

0
K) = (�;��0). Thus,

the transverse coordinates of the ith particle in the center of the
kicker (xKi; x

0
Ki) are related to those at the pick-up as follows:

xKi = �xi + ��i; x
0
Ki = �x0

i � �0�i: (4)

The path length of the particle trajectory between the centers of
the pick-up and the kicker in the linear approximation is given by

lj = l0 +�lj = l0 + 2(�x0
Pj + Q�j): (5)



Here, Q = ��0 +
R l0
0
dsD(s)=�(s), D(s) being the contribu-

tion to the dispersion from the dipole magnets and �(s) the ra-
dius of the curvature of the particle trajectory[3]. In this paper,
the betatron focussing in the undulators is neglected so that par-
ticle trajectories are straight. The trajectory of an ith particle in
the kicker undulator can therefore be written as

xKi(t) = xKi + x0
KizKi(t); x

0
Ki(t) = x0

Ki: (6)

The quantity zKi(t) in Eq.(6) is the longitudinal coordinate
given by:

zKi(t) = �i(1 + x02
Ki=2)(ct� si ��li); (7)

where �i is the speed of the ith electron divided by c, c the speed
of light, and si = cti the distance of the the ith particle behind
the reference particle in the pick-up undulator. It is necessary in
Eq.(7) to keep the second order term in the expansion of cosx0

Ki

because the leading term is sometimes cancelled out. The con-
stant term l0 in the path length does not appear in Eq.(7) because
the time t = 0 is defined to be the moment when the reference
particle passes through the center of the kicker undulator.

To find the field produced by the jth
electron EPj(x; zP ) exp i!(t � tj) , where ! = 2�c=� = kc,
it is sufficient to note the relation at zP = 0 (the center of the
pick-up undulator) ,EPj(x; 0) = exp[ikx0

Pj(x�xPj)]E0(x; 0),
whereE0 is the field of the reference particle[4]. We will approx-
imate E0(x; 0) = exp(�x2=4�2r), where �r is the rms mode
size at the waist. The field for zP 6= 0 is then obtained by a
Fresnel transformation. The resulting expression is further sim-
plified by neglecting the zP -dependence in the spotsize and the
wavefront curvature. The result is then multipled by the factor
exp[�(z � c(t � tj))=4�

2

C], where �C ' N�=
p
2�, N being

the number of the undulator periods. This factor is introduced to
account for the fall-off the field strength due to the increase of
the spotsize as well as the fact that the relative bandwidth of the
undulator radiation is about 1=N . In this way, we obtain

EPj(x; zP ; t) = E0 exp[ikzP (1� x02
j =2)� ik(ct� sj)�

(zP � ct+ sj)
2

4�2C
+ ikx0

j(x � xj) �
(x� xj � zPx

0
j)
2

4�2r
] (8)

In deriving Eq.(8), we have assumed that the undulator band-
width, 1=N , is much lager than both the relative energy spread of
the particle beam �� and the line width due to the angular spread,

2x02, where 
 is the relativistic factor and x0 is the angle at the
pick-up or kicker undulator.

We choose the optical ABCD
matrix for the pick-up–amplifier–kicker system to be the same as
that of the betatron transfer matrix,�I, with an an amplification
factor g. The field at the kicker EKj is then related to that from
the pick-up by EKj(x; z; t) = gEPj(�x; z; t� l0=c��sj=c).
Here, z is the longituninal coordinate measured from the center
of the kicker undulator.

III. COOLING AND HEATING TERMS
In the kicker undulator, the energy of a particle becomes mod-

ified due to the coupling of its transverse motion in the undula-
tor magnetic field and the transverse electric field of the ampli-

fied undulator radiation from the pick-up undulator. The change
in the relative energy of the ith particle is

��i = e
gKu

2mc2
2
Im

X
j

Z
dtEPj(�xKi(t); zKi(t); t��ti)

� exp(ikuzKi(t) � z2Ki=4�
2

L): (9)

The complex notation for the field is used here with Im imply-
ing the imaginary part, and e is the particle charge, m its mass,
Ku the undulator deflection parameter, ku = 2�=�u, �u the un-
dulator period length, and the trajectory of the ith paricle is spec-
ified by Eq.(6) and Eq.(7). We are assuming that the undulator
strength is tapering out as a Gaussian function with an rms length
�L ' L=

p
2�. Also note the relation �C = (1 � �)�L '

�L=2

2. Performing the t�integral, we obtain

��i = GIm

0
@�ii +

X
j 6=i

�ij

1
A ; (10)

where G = egKuE0L=2mc2
2, and

�ij =
�r

�ij(2)

exp

(
�
k2�2L�

2
rx

04
ij

8�2

ij(2)

� ik�li � ik(si � sj)

�

h�
xij � x0

ij(si � sj)�L=�C
�2 � x2ij � (si � sj)

2�2r=�
2

C

i
8�2

ij(2)

9=
;

� exp(i'ij) (11)

Here

�ij(2) =
q
�2r + x02

ij�
2

L=2; �ij(1) =
q
�2r + x02

ij�
2

L

li = �ti=c; si = ti=c; xij = xKi+xPj = �xi+xj+�(�i+�j)
x0
ij = x0

Ki + x0
Pj = �x0

i + x0
j + �(��i + �j)

The phase term 'ij in the last factor in Eq.(11) is a real quantity
with the property'ii = 0 and j'ijj � jk(si�sj)j for i 6= j. The
explicite expression of such a phase term will not be important
for the following calculations. The change in the average value
of �2i is then

h��2
1
i = 2GImh�1�11i+ n(G2=2)h�12�

�
12
i: (12)

Here the angular brackets imply taking the average with respect
to the variables si; �i; xi, and x0

i. We assume that the distribu-
tion function in these variables can be factorized into Gaussian
functions in each variable, with rms widths �z; ��; �x, and �x0 .
Since all particles are equivalent, we have arbitrarily chosen two
indices, i = 1 and j = 2. The first term in the above is the
cooling term. In obtaining the heating term, the second term in
Eq.(12), we have used the fact that the average of the quantity
�1j�

�
1j0 vanishes unless j = j0 because of the large, random

phase k(sj � sj0).
The cooling term can be evaluated in a closed form as follows:

2GIm < �1�11 >= � 4kGQ�2�
(1 + 2�2�2�=�

2
r )

3=2



exp

�
�2k2

�
�2x0�2 +

Q2�2�
1 + 2�2�2�=�

2
r

��
: (13)

This reproduces the expression derived in reference[3] when
��� � �r.

The heating term can be written as nsG
2=2, where ns =

h�12�
�
12
i is the number of particles in a sample for optical

stochastic cooling. The averaging with respect to variables s1
and s2 involves Gaussian integrals. Assuming for simplicity that
�z � �C , the result is

h�12�
�
12
i = �C=�z�

h �2r
�12(1)�12(2)

exp
�1
4

(
x2
12

�2

12(1)

+
x2
12

�2

12(2)

+
k2�2r�

2

Lx
04
12

�2

12(2)

)
i:

(14)
The rest of the averaging will be carried out approximately by

regarding the variablesx12 andx0
12

to be independent with Gaus-
sian distributions of widths �x and �x0 , respectively. These
quantities will be roughly given by �2

x � 2�2x + 2�2�2� and
�2

x0 � 2�2x0 + 2�2�2� . Performing the x12-average, we obtain

h�12�
�
12i =

�C

�z
h
�2r exp[�(k�L�rx02

12=2�12(2))
2]

�12(2)

q
�2

12(1)
+�2

x

i: (15)

The final average in the variable x0
12 can be estimated approx-

imately as follows: First, we assume that the Rayleigh length of
the undulator radiation is about �L so that

�r �
p
�L=2k; �r0 � 1=

p
2k�L (16)

The exponential factor in Eq.(15) can then be written as
exp(��2=4(1 + �)), where � = �2Lx

02
12
=2�2r . Thus, the average

is dominated by the region � � 1. For a rough estimate, there-
fore, we may set � � 0 everywhere except the exponential func-
tion, which we replace by exp(��2=4). The average of this term
can be expressed in terms of the modified Bessel functionK1=4.
By examining the result, we obtain the followingestimate for the
heating term:

G2

2
nh�12�

�
12i �

G2

2
ns �

�C

�z

�=2

2�
p
(�2r +�2

x)(�
2

r0 + �2

x0)
:

(17)
Note here that the quantity �=2 in the numerator is the coherent
phase space area 2��r�r0 . Equation (17) is the main result of our
analysis in this paper. We consider the meaning of this result in
the next section.

IV. THE ROLE OF PHASE SPACE AREA IN
LONGITUDINAL AND TRANSVERSE

SAMPLES
ComparingEq.(17) and Eq.(1), we see that the number of sam-

ples in the beam F for the present case is indeed in the form of
Eq.(2), with FL = �z=�C, and

FTx �
p
(�2r +�2

x)(�
2

r0 + �2

x0)

�r�r0

: (18)

This reduces the conjecture of reference [3], �x=�r, in the limit
�x � �L, where �x is the beta function of the particle beam
in the kicker undulator. However, note that Eq. (18) consists of
two factors, the size and the angular factors. The angular fac-
tor arises from the fact that two particles with angular separation
larger than the coherent mode angle do not interact, and there-
fore can not both belong to the same sample.

It is clear that ns will be further reduced by the number of
transverse samples in y-direction FTy, the expression of which
will be similar to that of FTx.

The analysis of previous section gives FL � �z=�C because
we assumed �z � �C. In analogy to the transverse samples, a
more general expression is

FL �
2�
p
(�2C + �2z)(�

2

C� + �2� )

�=2
; (19)

where �C� = 1=2k�C is the coherent bandwidth. In the limit
�z � �C ; �C� � ��, FL becomes the usual expression
�z=�C. In the opposite limit, �z � �C; �C� � ��, we obtain
FL = ��=�C�. Thus we find in this case that a faster cooling
would be achieved with a narrower bandwidth amplifier. The
implication of this conclusion for the cooling of bunched beams
will be studied in a future paper.
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