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ABSTRACT

In this paper we examine the connection between
emittance growth and entropy growth in linear accelerators.
We divide emittance growth in to two classes: reversible and
irreversible depending on the corresponding entropy change.
We propose the general hypothesis that if ∆ε > 0 and ∆S = 0,
then the emittance growth may be reversible. We also
propose that if ∆ε > 0 and ∆S > 0 then the emittance growth
is irreversible. We outline how the concept may be applied to
particular cases of relevance e.g. emittance growth and
recovery in electron photoinjectors, and wakefield induced
emittance growth, where correlations are introduced in the
transverse phase space.*

INTRODUCTION

The general connection between emittance (ε) and
entropy (S) was made over two decades ago by Lawson,
Lapostolle and Gluckstern [1]. The connection between
emittance growth and entropy growth has been mentioned
briefly by some authors [2,3].

In classical thermodynamics entropy is defined in two
ways [4,5]. Entropy is considered as a macroscopic quantity
in equilibrium thermodynamics, or as a microscopic quantity
of a statistical ensemble. In macroscopic thermodynamics,
entropy, like temperature, cannot be defined for a system that
is not in thermal equilibrium. This poses a difficulty when
dealing with non thermalized or non equilibrium beam
distributions such as those generated in photoinjectors [6].
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Fig. 1 Macroscopic states of a beam system
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We can define both thermodynamic and statistical entropy
for equilibrium state #1 or #2 in Fig.1, and consequently the
difference in entropy between the two states. In the
equilibrium the two definitions lead to identical results. In
many cases, the transition i.e. non-equilibrium region, may
extend from the cathode to the beam dump [7,8]

 DETERMINING THE ENTROPY

In the transition region we must rely on the statistical
definition. In the most general sense the statistical entropy of
a system can be written, as:4

S k f fi
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where k is Boltzmann’s constant, i denotes a microcanonical
state of the system, and fi is the statistical probability of that
state and fi

i
∑ = 1 .

In the case of a beam microbunch with a very large
number of particles (N) we can write the sum as in integral by
noting that a state corresponds to a six dimensional volume
element A6= δ6x, and the probability is equivalent to the
product of A6 times the distribution function
ρ6(x,px,y,py,z,pz). So that:

S kN x A x d x6 6 6 6
6= − ∫ ρ ρ( ) ln[ ( )]
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where ρ6
6 1( )x d x∫ = . To simplify matters for this short

paper, and without loss of generality, let us assume a
monochromatic beam and consider a 3-D trace space (x,x´,ζ)
where x´= dx/dz and ζ is the axial coordinate relative to the
center of the bunch, and A3 = δxδx´δζ. So that the 3-D
entropy is given by

S kN x A x d x3 3 3 3
3= − ∫ ρ ρ( ) ln[ ( )]

(3)
We will neglect the numerical subscripts from now on. To
deal with beams that are changing energy we can define a
normalized entropy Sn as:
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while keeping A constant, independent of energy.
How do we choose the size of the volume element A?

Let us neglect quantum mechanical limits. We could choose



A based on the limits of our ability to make observations on
the beam i.e. on the resolution of our instrumentation or on
the limits of physical phenomena of interest.

Consider the division of the bunch in to microstates or
sub-bunch slices as in Fig. 2.

We divide the bunch into a number of sub-bunches or
slices i of axial length δζ where δζ « σb the bunch length and
ζi is the axial coordinate of the ith sub-bunch relative to the
centroid of the bunch. Consider each sub-bunch to contain a
large number of particles, Ni. The ensemble entropy of the
bunch is the sum of the entropies of the sub-bunches i.e.
S Si

i

= ∑  where Si is the entropy of the ith  sub-bunch. So in

our reduced dimensional space Si is a 2-D entropy and S is
the 3-D entropy.

In general the normalized sub-bunch entropy can be
written as:
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where ~ ,ε i n  is the normalized rms emittance of a sub-bunch,

and Dρ is a unitless parameter that depends on the shape of
the trace space particle distribution. For a K-V distribution
DKV = 4; for a Gaussian distribution DG ≈ 5.4; for a water bag
distribution DW = 5. The entropy depends not only on the rms
emittance but also on the distribution function.
An entropy change can occur from a change in the emittance,
the distribution function or the number of particles in the
sub-bunch. Note that changes in Ni correspond to axial
migration of particles.

CORRELATED BEAMS

Consider in the case of a beam generated in a an rf
photoinjector, in which sub-bunch correlations are introduced
by the non uniform axial distribution of the bunch [9]. On
scales shorter than δζ we assume that randomization of the
phase space occurs. On scales longer than δζ we assume that
there may be correlations between the phase space and the
location in of the slice in the bunch.

The phase space of the ith sub-bunch may be
characterized by the emittance ~εi , and the Twiss parameters

$ , $ , $α β γi i i  and $ $

$α β γi i i
2 1+ = . Now envision process where the

phase space distribution of beam evolves while each sub-
bunch continues to contain the same particles and where the
εi remain constant but where the Twiss parameters change in
a ordered fashion i.e. the αi, βi, and γi maintain some well-
defined, well behaved functional relationships such that:

 $ $ ( , ), $ $( , ), $ $( , ) ~ ~( , )α α ζ β β ζ γ γ ζ ε ε ζi i iz z z z= = = =  and  and i

where z is the coordinate of the bunch centroid along the
beamline in the laboratory frame.

If the phase space is correlated in ζ, then the forces that
determine the phase space evolution must also be correlated
in ζ. Other examples of such processes might include single
bunch transverse-wakefield induced head to tail kicks, and
phase dependent longitudinal and transverse rf effects.
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Fig. 2 Division of the bunch in to slices.

Consider a longitudinal density distribution function ρ(ζ)

independent of z, such that ρ ζ ζ( )d =∫ 1 . If we define the

normalized rms emittance of the bunch in the conventional
way as:
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At z = 0, i.e. at the cathode, the emittance is the same for all
slices, so we can write ~ ( , ) ~

,ε ζ εn s n0 = , where ~ ,εs n is the slice

emittance at the cathode. Consider a situation where the
emittance of each slice is independent of z. This will be true
for linear transverse forces acting on each slice. Then:
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where we call C(z) the emittance correlation function and
C(0) = 1 i.e. at the cathode the bunch phase-space is
uncorrelated. Because of the properties of the Twiss
parameters C(z) ≥ 1 always. Therefore~ ( ) ~

,ε εn s nz ≥ always.

The value of C(z) is calculable form the beam dynamics. We
can write the normalized entropy in this case as :
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the latter equality when the ~ ,εs n  are equal. Note that the

entropy of the bunch, unlike the emittance, does not depend



explicitly on the precise details of the of the orientation of
the phase space of each slice. Therefore it is possible for
~ ( )εn z to change i.e. increase or decrease without any change

in Sn.

REVERSIBLE AND IRREVERSIBLE
PROCESSES

In order for Sn to increase the slice emittances ~
,εs n  must

increase. If the ~ ,εs n  increase then from eqn. (6), ~( )ε z  will

increase irreversibly and δSn > 0. Such increase could be the
result of non linear space-charge or other forces acting on the
beam. Conversely if the ~ ,εs n  do not increase then any

increase or decrease in ~( )ε z  is a result of changes in C(z)

and consequently the process is in principle reversible, and
also δSn = 0.

In the latter case emittance growth becomes recoverable.
This is the case in photoinjectors where solenoidal emittance
compensation is used [9]. In this case the combination of self
forces and the focusing force combine to introduce
correlations into the bunch. It is important to note that in the
photoinjector case there is no simple rotation in 6-D phase
space that will remove the emittance growth. The correlated
emittance growth may be removed by appropriate focusing
of the bunch. We have developed an analytic description of
the photoinjector emittance compensation process in which
C(z) can be calculated [10]. When we have uniform
transverse space-charge density in each slice and a well-
behaved longitudinal distribution, we see that C(z) will grow
and can be brought back down to unity when appropriate
focusing forces are applied.

What happens when the correlations implied in eqn. (6)
are removed, i.e. C(z) = 1 and ~ ( ) ~

,ε εn s nz = ? Then any further

changes is ~ ( )εn z result from changes in ~ ,εs n  and result in

changes in Si and S and are therefore irreversible. The
correlations can be lost by axial particle mixing, driven by
thermal or space-charge effects. If C(z) > 1 and no attempt is
made to focus the beam then the correlations will be lost over
some longitudinal diffusion distance zD. When this happens
the slice emittances grow to become equal to the bunch
emittance and hence the correlation is lost, the entropy grows
and the emittance growth becomes irreversible.

Another example is a bunch that experiences a
transverse dipole kick such that the magnitude of the
displacement is related to the position (ζ) within the bunch.
The bunch emittance is increased. The sub-bunch emittances
are unchanged. If an equal and opposite kick is applied then
the bunch emittance is recovered. If before the correlate
emittance growth is removed there are multiple uncorrelated
kicks, of if there is particle diffusion, the emittance growth
becomes irreversible.

Similar statements can be made about phase dependent
rf effects.

In practice we can consider emittance growth to have
two components:

1.  where δS = 0
2.  where δS > 0

so that δε δε δε~( ) ~( ) ~( )z z zR I
2 2 2= +  where the subscripts R and

I stand for reversible and irreversible respectively. In the
example of  eqn. (6b) we have:
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There is no guarantee that reversible emittance growth can in
fact be reversed. The degree of achievable reversibility
depends on out ability to apply correlated corrective forces to
the bunch.

There are still many unanswered questions about the
entropy emittance growth question. In future work we will
show how entropy growth can lag behind emittance growth
and establish quantitative criteria for the distance scales over
which entropy growth occurs. A connection will be made to
free-energy concepts.[3,11-13]. We will also generalize our
concept to 6-D phase space.
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