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We can define both thermodynamic and statistical entropy
ABSTRACT for equilibrium state #1 or #2 in Fig.1, and consequently the
difference in entropy between the two states. In the
In this paper we examine the connection betweequilibrium the two definitions lead to identical results. In
emittance growth and entropy growth in linear acceleratorsany cases, the transition i.e. non-equilibrium region, may
We divide emittance growth in to two classes: reversible aextend from the cathode to the beam dump [7,8]
irreversible depending on the corresponding entropy change.
We propose the general hypothesis tha&i®> 0 andAS = 0,
then the emittance growth may be reversible. We also DETERMINING THE ENTROPY
propose that if\e > 0 andAS > 0 then the emittance growth
is irreversible. We outline how the concept may be appliedtp the transition region we must rely on the statistical
particular cases of relevance e.g. emittance growth ashefinition. In the most general sense the statistical entropy of
recovery in electron photoinjectors, and wakefield inducedsystem can be written, &s:
emittance growth, where correlations are introduced in the
transverse phase space. S= —kz f In(f))
|

INTRODUCTION 1)
where k is Boltzmann’s constant, i denotes a microcanonical

The general connection between emittanep &nd state of the system, andig the statisticaprobability ofthat

entropy (S) was made over two decades ago by LawsSiRte andz f=1.
Lapostolle and Gluckstern [1]. The connection between

: . In the case of a beam microbunch withvary large
emittance growth and entropy growth has been mentioned . . g
. number of particles (N) we can write the sum as in integral by
briefly by some authors [2,3].

noting that astate corresponds to a six dimensionalume

In classical thermodynamics entropy is defined in tweqement A= &%, and theprobability is equivalent to the

ways [4,5]. Entropy is considered as a macroscopic quantl%duct of A times the distribution function
in equilibrium thermodynamics, or as a microscopic quanti? (x 2,0). So that:

of a statistical ensemble. In macroscopic thermodynamics$, PRy Z.B) e
entropy, like temperature, cannot be defined for a system tivat- ~ KN Ps(X)IN[AP(X)]d"x

is not in thermal equilibrium. This poses a difficulty wheR)

dealing with non thermalized or non equilibrium beaghere J—pe(x)dele_ To simplify matters for this short

distributions such as those generated in photoinjectors [6]. ) .
paper, and without loss of generalitiet us assume a

monochromatic beam and consider a 3-D trace space(fx,x’,
where x'= dx/dz and is the axial coordinate relative to the
center of the bunch, and,A ox&x'd(. So that the 3-D

—_———— . .
transition entropy is given by
> —_— S, =—kNJ'p3(x)In[A303(x)]d3x
stationary state #1 stationary state #2 (3)

We will neglect the numerical subscripts from now on. To
deal with beams that are changing energy we can define a
normalized entropy Sas:

S, = ~kN[p(x x',z)|n[—Ap(’é';"Z)

Fig. 1 Macroscopic states of a beam system
Jdxdx of (4)

while keeping A constant, independent of energy.
How do we choose the size of the volume element A?
us neglect quantum mechanical limits. We could choose
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A based on the limits of our ability to make observations dhthe phase space is correlated {inthen the forces that
the beam i.e. on the resolution of our instrumentation or datermine the phase space evolution must also be correlated

the limits of physical phenomena of interest. in {. Other examples of such processes might include single
Consider the division of the bunch in to microstates bunch transverse-wakefield induced head to tail kicks, and
sub-bunch slices as in Fig. 2. phase dependent Iongrtudrnal and transverse rf effects.
We divide the bunch into a number of sub-bunches -+~ T
slices i of axial lengt® whered( « g, the bunch length and : . ﬂ’ ) . SLICE
¢, is the axial coordinate of th& sub-bunch relative to the ! ! R SRS ~ with N:
centroid of the bunchConsider each sub-bunch to contain “ particles
large number of particles,, NThe ensemble entropy of the 3 S ! ! 3 : ‘ ‘
bunch is the sum of the entropies of the sub-bunclees : } N }
S= ZS‘ whereS; is theentropy ofthe I" sub-bunch. Soin @
our reduced dimensional spaceisSa 2-D entropyand S is »‘ﬁ : : : : Y,
the 3-D entropy. R
In general the normalized sub-bunentropy can be MlcrobunchZ >
written as:
D,TE, .8 Fig. 2 Division of the bunch in to slices.

S . =kN, In(——"-
I,n i ( A )

(5) Consider a longitudinal density distribution functio()
where Ei,n is the normalized rms emittance of a sub-bunchdependent of z, such thi’tp(z)dz =1. If we define the

and B is a unitless parameter that depends on the shapg,@imalized rms emittance of the bunch in the conventional
the trace space particle distribution. For a K-V drstrrbutrqnay as:

D,, = 4; for a Gaussian distribution,B 5.4; for a water bag

distribution O, = 5. The entropy depends not only on the rms  _ ) )
emittance but also on the distribution function. &(2) = BV[<X §ox%) = (oc) ]
An entropy change can occur from a change in the emittanggn:

the distribution function or the number of particles in the 3
sub-bunch. Note that changes in eorrespond to axial & ) _ 55 (€.2B(E, Z)D(Z)CZJ'S € 2y, Z)D(Z)GI

Ib-bu _ : 6a)
migration of particles. E—(J’s (€. 2)8(Z, 2p@Q) X)* E

CORRELATED BEAMS . ] )
Atz = 0, i.e. at the cathode, the emittance is the same for all

. : , slices, so we can writg€ ({,0) = €_,, where €__ is the slice
Consider in the case of a beam generated in a an If (G0) = &p sn

photoinjector, in which sub-bunch correlations are introducéghittance at the cathode. Consider a situation where the
by the non uniform axial distribution of the burj@. On emittance of each slice is independent of z. This will be true
scales shorter thadl we assume that randomization of thé0r linear transverse forces acting on each slice. Then:

phase space occurs. On scales longer dhame assume that SB(Z Z)p(Z)dZJ'v(Z z)p(Z)cKﬂ
there may be correlations between the phase space andgle) = =£,C(2
location in of the slice in the bunch. E‘(IG(Z,Z)D(Z)dZ) E

The phase space of the" isub-bunch may be (6b)

characterized by the emittana, and the Twiss parametersynere we call C(z) the emittance correlation function and
O‘anVi and @, +_']__[3,yi Now envision process where theC(0) = 1 i.e. at the cathode the bunch phase-space is

phase space distribution of beam evolves while eadh uncorrelated. Because of the properties of the Twiss
bunch continues to contain the same particles and whereRAE@Meters C(zk 1 always. Thereforg, (2) 2 €, always.
€ remain constant but where the Twiss parameters changd e value of C(z) is calculable form the beam dynamics. We
a ordered fashion i.e. the, B, andy maintain some well- can write the normalized entropy in this case as :
defined, well behaved functional relationships such that: ¢ 0 D T[S 0C

. A s A e~ ”:ZS” ZkNInB—D kNIn(——"=) (7)

a; =0a((,2), B, =B, 2), andy,=y((,2) anc; =£((, 2 r A A

where z is the coordinate of the bunch centroid along the latter equality when the&,, are equal. Note that the

beamline in the laboratory frame. entropy of the bunch, unlike the emittance, does not depend



explicitly on the precise details of the of the orientation of Similar statements can be made about phase dependent
the phase space of each slice. Therefore it is possible fogffects.
€,(2) to change i.e. increase or decrease without any change In practice we can consider emittance growth to have

inS,. two components:
1.wheredS =0
REVERSIBLE AND IRREVERSIBLE 2.wheredS > 0
PROCESSES so thatdg(z)? = 8€(2),~ +8€(2),” where the subscripts R and

| stand for reversible and irreversible respectively. In the
In order for Sto increase the slice emittances, must example of eqn. (6b) we have:

increase. If theg,, increase then from eqn. (6}(z) will B —,
. . . : 8¢, (2)* _dC(2)* | O,
increase irreversibly and5, > 0. Such increase could be the=""—=-= (27 t—=5
result of non linear space-charge or other forces acting on tﬁe(z) (2) €sn
beam. Conversely if theg,, do not increase then any
increase or decrease &(z) is a result of changes in C(Z)There is no guarantee that reversible em_lttance growth can in
- o . fagt be reversed. The degree of achievable reversibility
and consequently the process is in principle reversible, ad1 . .
epends on out ability to apply correlated corrective forces to

alsodés, = 0.
. t|i1e bunch.
In the latter case emittance growth becomes recoverable.

L . - : . There are still many unanswer uestions about the
This is the case in photoinjectors where solenoidal emittance € any swered questions abou

S . o nir mittan rowth tion. In future work we will
compensation is used [9]. In this case the combination of se Ig opy emittance gro questo uture wo ©

forces and the focusing force combine to introduc':sinow how_entropy groyvth c_an _Iag beh|nd_em|ttance growth
. . . . and establish quantitative criteria for the distance scales over
correlations into the bunch. It is important to note that in the . . .
- . . o which entropy growth occurs. A connection will be made to
photoinjector case there is no simple rotation in 6-D phase . .
. . rge-energy concepts.[3,11-13]. We will also generalize our
space that will remove the emittance growth. The correlate
. . .concept to 6-D phase space.
emittance growth may be removed by appropriate focusing
of the bunch. We have developed an analytic description of
the photoinjector emittance compensation process in which
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