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Abstract

Using normalized one-turn resonance-basis Lie generators
in conjunction with an action-angle tracking algorithm (nPB
tracking), we have been able to better understand the relation-
ship between the dynamic aperture and lattice nonlinearities.
Tunes, tune shifts with amplitude and/or energy, and resonance
strengthsmay be freely changed to probetheir individua impact
on the dynamic aperture. Fast beam-beam simulations can be
performed with theinclusion of nonlinear | attice effects. Exam-
plesfrom studies of the PEP-11 lattices are given.

I. INTRODUCTION

Simplelatti ce e ement-by-element tracking for dynamic aper-
ture determination is essential but limited by the fact that infor-
mation is obtained at only one working point and one set of lat-
tice parameters. Furthermore, inadvertent errors in the lattice
and control files can remain undetected. To enhance our under-
standing of lattice nonlinearities and their relationship with the
dynamic aperture, we have devel oped a set of one-turn mapping
procedures that allow us to obtain one-turn resonance-basis Lie
generators for circular accelerator nonlinear lattice studies.

Contained in the Lie generators are tune-shift and resonance
terms of different orders. These terms can be suitably normal-
ized for comparisons among themselves or with those obtained
from one of a series of latticesthat are under improvement. Fur-
thermore, by directly taking Poisson bracket expansion of the
resonance-basis Lie generators to a suitable order to evaluate
the turn-by-turn Lie transformations, one not only can achieve
avery fast tracking for dynamic aperture determination to ob-
tain swamp plots(dynamic aperturevs. tune), but also can freely
change selected tune-shift or resonance terms to probe their in-
dividua impact on the dynamic aperture.

In the following sections these one-turn mapping procedures
are described and examples for their applicationsin PEP-11 lat-
tice devel opment are presented.

I1. The One-Turn Resonance Basis Map

To obtain resonance basis map for a lattice we first extract a
one-turn map at a suitable observation position as a Taylor ex-
pansi on about the on-momentum closed orbit. In genera, wein-
clude all lattice nonlinearities. However, we can concentrate on
aparticular lattice modul e by inserting alinear | attice for the rest
of thering. We usually consider 2-dimensiona maps with a pa
rameter  representing the momentum deviation dp/p. Thus, the
Taylor map can be expressed as

7=U(23)+ 0N +1), (1)
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where @(N + 1) indicates that the Taylor map is truncated at
anorder of N, 2 = (z, pe, y, py) istheglobal or initial phase-
space coordinate vector and 7 = (X, P,Y, P,) isthe phase-
space coordinate vector after oneturn.

Once the one-turn Taylor map is obtained, we make a Floquet
transformation such that

7 =AYZOR(eTEVAZ0)Z+ 0 (N+1), (2
whereR.(7) isone-turn purerotational map inthe 4-dimensional
transverse canonical phase-space, and .A(Z, J) and its inverse
A~Y(Z,8) are the 4-by-5 matrices that generate the Floquet
transformation. The dispersion, n, and the Courant-Snyder pa
rameters, o, 3, and y are dl included in A(Z, 6) and A~1(Z, d).
Making the Floquet transformation zp = .A~!(Z, )7 and then
droppingthe subscript /' for convenience, oneobtainsaone-turn
map

7 =R(F)e!E) z ?3)

Thepolynomial f(Z,§) of the Lietransformationin Eq. 3 can
be decomposed in a complete basis consisting of the rotational
eigen-modes, i1+ = = F ip, = 2JeF g = x Fip, =
/2 yeti where J,., Jy, 0, and 6, areaction-anglevariables.
One then obtains

f(Z,0) =

Z amﬁp(gjx)"?x(2Jy)n7y6pcos(mx9x +my +¢ﬁrﬁp)a (4)

AMp

where theterms with m, = m, = 0 arethe tune shift terms[1].
For convenience, al these tune shift terms are grouped together
and represented by Az (J,, Jy, §). Theremaining terms, al with
angular variable dependence, are aso grouped and represented
by hr(Je, Jy, bz, 0y, 0). Thus, the one-turn map given by Eq. 3
can be written as

Z — 63_Nsz—Nny:e:_hT (Jznyvé)_hR(ez7Ja:7€yv‘]y76):5" (5)

where we have replaced the rotation R (Z) withitsLie represen-
tation e~ #«Je=1vJv: where ,, and y,, are theworking tunes of
thelattice. Thisisthe resonance basis map.

1. NORMALIZATION OF TUNE SHIFT AND
RESONANCE COEFFICIENTS

It should be noted that hr, h g, and the action coordinates(J,.,
Jy) in Eq. 5 have the dimensions of emittance whiled,,, d,, and
¢ aredimensionless. Therefore, the coefficientsin the polynomi-
dshy and hp havedifferent dimensions. For convenienceindi-
rectly using these coefficients for cal culating and comparing the



tune shift and resonance strength of different orders, we intro-
duceascalmgtransformamlonwchthar[hT = e hp, hr = eohp,
Jp = ey, and Jy = exJ to obtain the dimensionless one-
turn map which, after dropping the symbol 7, is again given by
Eq. 5 except with modified coefficient values. Notethat ¢, isthe
horizontal emittance, whichin PEP-11 is48 nm-rad for theHigh-
Energy Ring (HER) and 64 nm-rad for thethe Low-Energy Ring
(LER).

Inour numerical studiesfor PEP-11 |attices, wesete, = %ex to
obtaintherequired vertical aperturethat issufficient forinjection
and for vertical blow-up from the beam-beam interaction. Most
often we cal cul ate the resonance strength and tune shift along the
100 (10 times the nominal beam size) dlipser? + E—Zrz = N?

with == = 2and N = 10, wherer, = /2J,,and r, = /2J,
are radu in the two-dimensiona phase-space planes.

A. TUNE HIFT

Using Hamilton’sequations and the effective Hamiltonian hp
in Eq. 5, one can obtain both horizontal (x) and vertical (y) tune
shiftsas explicit polynomialsin the geometric invariants ./, and
Jy and the chromatic amplitude é, given by

1 Ohr(Js, Jy,d)
Avg(Jy, Jy,0) = w oL
and
1 Ohr(Je, Jy,d)
o dJy '
To make comparison of tune shift terms of different order, we
usually calculate the maximum of each term along the 100 €-
lipse.

Avy(Jy, Jy,0) =

B. RESONANCES

Since resonance terms (in hg) of higher orders have larger
derivatives, thereby causing larger step-sizesin phase space, we
prefer to measure the strength of aresonance term by taking its
Poisson bracket (PB) with respect to phase space coordinates
Je, Jy, 0., and 6. From these PBs we compute the phase-space

step [2]

A7 = wmaw + (A2 +

G_x[(ryAgy)z +

& (Ary)?].

We then compute the maximum value of |AZ] for all possible
vauesof b,,6,, J.,and J, withtheconstraint 2 + Z—er = N2,
This maximum is what we call the normalized resonance basis
coefficient. |[AZ] = 1 means that the corresponding resonance
can at most cause a phase-space motion of 1o in oneturn for a
particle on the 10 boundary.

C. ASAMPLE PLOT

Each of the tune shift and resonance termsis uniquely repre-
sented by a set of indices (7, 7, p). For a map of 10th-0rder,
there would be thousands of terms. Although most of the terms
are essential to the lattice nonlinear behavior, in search for im-
provement of thelattice, oneonly needsto pay attentiontoalim-
ited number of larger terms. Asan example, Figure 1 showsthe
normalized tune shift and resonance coefficients that are larger
than 0.01 for a PEP-11 LER bare lattice.
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Figure. 1. Normalized tune shift and resonance coefficients plot-
tedinlogscalehorizontally. Thevertical axisshowscorrespond-
ingindices(m,, my, n., ny) for resonances and orders. Thecor-
responding chromaticindices, p's, are not explicitly showninthe
axis but are indicated with line patterns (p = 0: solid, 1: dashes,
2: dots, 3: dotdashes, etc.

V. nPB TRACKING AND ITSRELIABILITY

The normalized tune shift and resonance coefficients de-
scribed in the last section can help us indentify a limited num-
ber of termsthat would degrade the dynamic aperture. To under-
stand deeper and confirm moreprecisely their individual impacts
on thedynamic aperture, we can freely change the corresponding
coefficients and then evaluate the updated resonance basis map
to see the change of the dynamic aperture.

To evauate a resonance basis map, we directly take Poisson
bracket expansion of theresonance basisLiegeneratorsto asuit-
able (n) order and so the name of nPB tracking. The procedure
of nPB tracking is basically to perform turn-by-turn tracking of
the particle phase-space coordinates. Thisis done by evaluating
the one-turn map given by Eq. 2 followed by an update of the
particle momentum deviation (d) through an accurate but con-
cise time-of-flight map. Notethat in evaluating the Lietransfor-
mation, theLie generator, f = —hp — hpg, iskeptin theaction-
angle variable space while the particle phase-space coordinates
are always kept in Cartesian coordinates which are considered



asfunctionsof the action-anglevariables for the Poisson bracket
calculation — thisis the key to the fast computational speed of
the nPB tracking since all the Sines and Cosines can be cal cu-
lated only once and stored for repeated turn-by-turntracking [3].

Astothereliability of thenPB tracking, one may be concerned
with thefact that thenPB trackingisnot 100% accurate since the
map is truncated at a moderate order and not 100% symplectic
since one does not carry the Poisson bracket expansionto thein-
finite order. However, it iswell understood that the required ac-
curacy and symplecticity depend on circumstances [4]. For the
PEP-I1 lattice dynamic aperture studies (only 1024 turns needed
because of synchrotron radiation damping), from numeroustests
wehave concluded that a10t-order map with 3-Poi sson-bracket
expansion of the Lie transformation is accurate and symplectic

enough. It takesabout 1 minutewithsuch a10t-order map, 3PB
tracking onaRI SC workstationto obtain adynamic apertureplot
a a given working point, which would otherwise have taken a
few hourswith element-by-element tracking.

V. SWAMP PLOTS FROM nPB TRACKING

The fast computational speed of nPB tracking allowsfast cal-
culation of dynamic aperture and so one can obtain a swamp
plot for agiven lattice in a reasonable time. To obtain a swamp
plot with the nPB tracking, one would follow exactly the nPB
tracking procedures described in Section IV, except that one
would increment the working tunes . and s, while keeping
all other terms in the resonance basis map fixed, to obtain dy-
namic apertures throughout the tune plane. This is equivaent
to using element-by-element tracking and inserting an exactly
matched linear trombone to switch the working tunes without
further changing the lattice. In our practice, we have generally
found such swamp plots very informative. They have helped us
in evaluating and improving the PEP-II lattices. Occasionally
wewould check afew spotsof aswamp plot against correspond-
ing e ement-by-element trackingsto ensure that thereare no sur-
prises.

Some typical PEP-II lattice swamp plots can be found in
Ref. [5].

V1. BEAM-BEAM WITH nPB TRACKINGS

The fast speed of the nPB tracking allows one to include the
arc lattice as a nonlinear resonance-basis map for beam-beam
simulations. To further enhance thetracking speed, one can even
drop irrelevant resonance terms. As an example, shown in Fig-
ure 2 are the beam tail distributions of the PEP-II HER 37 =
2.0cm lattice with and without nonlinear terms in the one-turn

map.

VIl. SUMMARY

The one-turn mapping procedures described above have been
important for PEP-11 |attice development. During the course of
numerous PEP-I1 | attice updates, wewere ableto i dentify impor-
tant tune shift and resonance terms that would degrade the dy-
namic aperture. We then confirmed and understood their indi-
vidua impacts on the dynamic aperture with nPB tracking and
swamp plots, thereby improving the | attice.

Figure. 2.  The beam tail distribution of PEP-II HER: (a)
withlinear lattice, and (b) additionally includingtune-shift-with-
amplitude terms.
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