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Abstract

In beams which are sufficiently close to the linear stability limit,
a variety of nonlinear wave phenomena are readily observed
which can be used to diagnose aspects of the beam dynamics
and the machine impedance. We have found that debunched
beams in both the Fermilab Main Ring and the Tevatron are
marginally stable to longitudinal oscillations and exhibit non-
linear three-wave coupling as well as nonlinear Landau damp-
ing and the formation of soliton-like perturbations. In addi-
tion, we have generated classical nonlinear echoes using two-
frequency excitation in the Fermilab Accumulator. These phe-
nomena can be used as diagnostic tools to determine diffusion
rates in the beam as well as the longitudinal impedance. More-
over, aspects of these effects are likely involved in the approach
to equilibrium as a longitudinal instability saturates under the
influence of a driving impedance. We present experimental re-
sults and analytical models based on perturbation techniques.
In addition, we describe particle simulations which model the
fully nonlinear evolution of these phenomena.

1 Introduction

In recent years, growing attention has been given to the issue
of increasing beam intensity in Fermilab’s synchrotrons. How-
ever, as these machines have been pushed to operate near their
stability limits, they have been observed to be operating under
marginally stable conditions.[1] A variety of unstable modes
have been identified and suppressed to some degree, however
there exists a background level of fluctuations under nominally
quiescent conditions whose origins have not been well under-
stood.

To shed further light on these phenomena, an investigation
has been underway to determine the driving causes and satura-
tion mechanisms associated with potential instabilities in Fer-
milab machines using a variety of methods including the well-
known beam transfer function technique [2]. In this procedure,
an externally-applied sinusoidal voltage is impressed on the
beam and the response is monitored with a wall current pickup
elsewhere in the ring. The magnitude and phase of the response
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is a measure of the beam distribution function and the machine
impedance at the excited frequency. For ease of analysis, our
efforts have been focussed on the study of longitudinal oscilla-
tions in an initially fully debunched beam.

However, under certain conditions, beam transfer function
measurements have exhibited nonlinear behavior, indicating a
rich variety of wave phenomena not normally considered in the
beam transfer functionmodel. In fact, the ease withwhich these
phenomena can be made to occur suggests a ubiquitous pres-
ence in any beams which are driven near their stability limits.
Moreover, in the course of this study, we have rediscovered a
weakly nonlinear coupling phenomenon which has been inves-
tigated in other fields, but has not yet been exploited in high
energy synchrotrons: beam echoes. Echo phenomena carry the
potential as a very useful diagnostic of weak diffusion phenom-
ena in the beam.

In this work we first describe the beam transfer function tech-
nique in the context of the Fermilab machines in which these
measurements were made. Then we outline a series of exper-
iments carried out to clarify the nature of the observed mode-
mode coupling. Next, we describe the observations of longitu-
dinal beam echoes and give an explanation of these phenomena
in terms of a weakly- nonlinear mode coupling model. Finally,
we report the results of particle simulations which were under-
taken to describe the fully nonlinear evolution of the mode cou-
pling. In particular, we wish to shed light on how the beam
emittance is affected by the presence of coherent fluctuations
and the manner in which an equilibrium state is approached.

2 Experimental Results

In both the Fermilab Main Ring and Tevatron, attempts at
measuring beam transfer functions have led to rather complex
results[1]. Regarding measurements in the Main Ring, a 5 MHz
resonant cavity with a Q of 42 was used as a kicker. In this case,
the beam transfer function showed the presence of notches in
the response function which presumably correspond to deple-
tion zones in the momentum distribution. In the response, each
notch represents a narrow-band resonance which adds a degree
of freedom to the longitudinal mode structure. Further investi-
gation showed that the momentum location of the notches was
tied to the betatron tune settings in the machine, which implies
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Figure 1: Oscillation of the drive amplitude following a 0.5
msec burst of rf at the h=106 harmonic. The current envelope
suggests phase rotation.

the notches are the result of transverse resonances which de-
plete momentum space depending on the level of machine chro-
maticity. This notion was confirmed by changing tune settings,
resulting in a systematic movement of the momentum notches.
As a result of these notches, it is expected that the linear stabil-
ity boundary for longitudinal oscillations is radically altered. In
particular, a typical momentum width of a notch was found to
be 5% or less of the full momentum spread. The Keil-Schnell
stability criterion [3] suggests that such a notch would reduce
the stability threshold by over two orders of magnitude.

In an attempt to assess stability in this case, the full spec-
tral response over several revolution harmonics was measured.
However, it was found that the response in the Main Ring was
significantly nonlinear with no apparent intensity threshold.
(Similar results have been previously reported for high inten-
sity coasting beams in the Tevatron albeit with a well-defind
threshold condition[4]). A key feature in the response is the
observed tendency of the drive frequency to couple primar-
ily downward in frequency. In fact, the coupling to the side-
bands was observed to produce a regular cascade to increas-
ingly lower frequencies. In order to further clarify these phe-
nomena, a series of experiments in the time domain was carried
out where the kicker cavity was excited for a short period of
time, approximately 0.5 msec, using a fast rf gate. It is worth-
while to note that the 5 MHz cavity fields decay in 0.01 msec.
The response at the first lower sideband, shown in Fig. 1 shows
a characteristic oscillationof the beam current envelope follow-
ing the excitation pulse suggestive of phase rotation. In addi-
tion, lower sidebands showed the same response after a delay
proportional to the harmonic spacing relative to the drive fre-
quency. The observed time delay suggests a clear causal rela-
tionship in the flow of power from higher harmonics to lower
ones and implies that the coupling occurs predominantly across
one harmonic at a time. Of note here is the fact that the peak
response occurs several harmonics distant from the drive fre-

quency. This characteristic is intrinsic to the beam response and
is not a function of the applied power.

3 Parametric Coupling Model

These phenomena are characteristic of classical three-wave,
or parametric, coupling which has been studied extensively in
plasma physics[5]. Both the single-sided character of the fre-
quency response and the depletion of the pump frequency are
well-known effects in this type of resonant coupling. Unique to
the beam case is the fact that there exists an infinite collection
of longitudinal modes, and hence potential daughter waves, in
this periodic system.

The conditions for longitudinal mode coupling can be ob-
tained from the Vlasov equation by a perturbation approach
wherein mode-mixing terms are retained in the expansion of the
distribution function. Conservation of energy leads to the fre-
quency matching condition,!n + !k = !m . If the frequency
of the driving wave is 
0, then !n+
0 = !m must be obeyed
in order to have energy transferred into a pair of longitudinal
modes. This conditionensures that coupling occurs only down-
ward in frequency. The dispersion relation for parametric cou-
pling of three waves can be shown to be[4]:
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where � is the growth rate and  = ko�. We note that the left
hand side of Eq. 1 represents the product of linear dispersion
relations for modes m and n. Thus, the effect of a small driving
amplitude is that the coupling threshold must occur close to the
linear mode frequencies. Moreover, the threshold for coupling
decreases to zero amplitude as the linear stability boundary is
approached. The coupling threshold is found to scale as the in-
verse fourth power of the momentum spread so that coupling is
most likely to occur in notches in the distribution function.

In this analytical model, the pump amplitude was held fixed,
however it can be expected that the daughter waves will also
have a reaction back on the pump. In simple systems, it has
been shown that the exchange of energy between parametri-
cally coupled waves reaches a steady state where all the en-
ergy oscillates between the various modes [6]. Indeed the pump
may become completely depleted by the presence of strongly-
coupled daughter waves. Such a process is likely the cause of
the enhanced wave amplitudes at lower sidebands relative to
the pump amplitude. With few exceptions, however, the case
of a large number of multiple harmonics, including dissipation,
has not been treated in the literature [6].
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Figure 2: Harmonic spectrum generated in the beam response
to impulse excitation at h=106. The harmonics shown here are
associated with the first lower sideband, h=105, excited in the
parametric decay.

4 Nonlinear Landau Damping

The oscillatory behavior of the impulse response observed in
the Main Ring can be related to a well-known phenomenon in
plasma physics known as nonlinear Landau damping[7]. In this
process, an initial sinusoidal potential perturbation will cause
a portion of the distribution function to become trapped in the
potential wells of the wave, namely those particles whose rela-
tive energy in the frame moving with the perturbation is suffi-
ciently small. This, of course, causes bunching to occur and the
resulting trapped particles will begin to exchange energy coher-
ently with the wave in the form of a rotation in phase space. The
steady state condition reached is such that the oscillations of the
system decay much more slowly that that expected from sim-
ple decoherence through the frequency dispersion of the beam.
This is indeed the case, as shown in Fig. 1. Another charac-
teristic of this process is the tendency to generate a rich higher
harmonic spectrum as the trapped particles are progressively
focussed into tighter and tighter bunches[8]. This feature was
also observed, as depicted in Fig. 2. This suggests that wake-
fields play a role in the evolution of the transient response and
we wish to exploit this connection to determine the wakefields
themselves.

5 Beam Echoes

One application which arises from the phenomenon of para-
metric coupling in the time domain is that of beam echoes[9].
Echoes have been found in many other fields[10, 11], but have
not yet been applied in the context of synchrotrons, although
bunched beam echoes have been investigated theoretically in
previous work[12, 13]. The echo phenomenon can be viewed
as a nonlinear mixing of two waves propagating in opposite di-
rections around the ring. If a short duration rf excitation is ap-

plied to the beam of the form exp(im(!0 + k0�)t), then the
energy dependence of the phase causes the macroscopic per-
turbation to decay in a Landau damping time. If, however, a
second pulse of the form exp(�in(!0 + k0�)[t � �t]), is ap-
plied after a delay �t, by virtue of the amplitude nonlinearity,
product perturbations of the form exp(i[m� n](!0 + k0�)t +
in(!0 + k0�)�t), can occur at the difference frequency (m �

n)!0. These second-order perturbations have the property that
the energy dependence can disappear at a tE = n=(n�m)�t,
which permits the phase-mixing to be undone, resulting in a re-
construction of a portion of the original perturbation.

A complete analysis of this phenomenon for a coasting beam
parallels the parametric coupling anaysis and leads to an ex-
plicit expression for the beam current as an integral over the
beam distribution function[9].
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where n and n � m are the harmonic numbers of the ex-
citation pulses and � is the longitudinal diffusion coefficient
due to scattering or noise. (Wakefield effects have been ig-
nored to simplify the analysis, but may be readily retained).
The characteristic echo response is shown in Fig. 3. The first
pulse is at the lower harmonic number n � m while the sec-
ond pulse occurs at harmonic n after a delay �t. At time tE =
n=(n�m)�t, an echo is observed whose shape is proportional
to @f0=@� . If a series of various echo delays are chosen, the
amplitude envelope maps out a characteristic shape from which
the collision frequency � can be determined, shown in Fig. 4.
Such an experiment was carried out in the Fermilab Antipro-
ton Accumulator yielding a typical momentum diffusion rate of
1=� � 3hrs�1, which is consistent with the measured heating
rate of the momentum cooling system. Thus it is expected that
echo decay can be used to measure very weak diffusion rates in
beams.

Once verified, bunched beam echoes hold the promise of per-
mitting measurement of a variety of important diffusion mech-
anisms, such as beam-beam, intra-beam scattering and noise.

6 Simulations

Simulations of coherent phenomena in coasting beams have
been carried out for a number of years and results relevant
to our case were first reported in reference 14. The essential
physics is contained in the character of the incremental kicks
given to the particle’s position and energy per turn, relative to
the central momentum particle. These may be expressed in the
form
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Figure 3: Time evolution of the beam response due to impulse
excitation first at n�m = 9 followed byn = 10 in the Antipro-
ton Accumulator. An echo occurs after a delay n=(n � m)�t,
at the difference harmonic m = 1.
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Figure 4: Envelope of the maximum echo amplitude as a func-
tion of the applied delay time between excitation pulses. A
characteristic decay is observed which depends on weak diffu-
sion processes in the beam.

whereZk is the longitudinal impedance and is the Fourier trans-
form of the wake function given by
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In our case, only a finite collection of modes play a role and we
may considerably reduce computation time by restricting the
number of modes included in the wake function. The results for
a model impedance at h=10 demonstrate the tendancy for wave
overturning and self-trapping to occur as shown in Fig. 5. A
soliton-like structure appears on the low energy side of the dis-
tribution functionand becomes progressively decelerated in the
resulting wakefields. Such behavior has indeed been observed
experimentally in the Main Ring[1]. The macroscopic current

Figure 5: Phase space (���) diagram of the particle simulation
after initial saturation and wave-overturning has taken place.
Soliton-like structures have formed on the low energy side of
the distribution.

appears to oscillate in a manner similar to that observed in Fig.
1. Each bunch thus formed undergoes further bifurcation un-
til the momentum spread has increased to the point where the
beam has become marginally stable. We can associate these ef-
fects to the tendancy to couple power from the initially unsta-
ble frequencies over a wide bandwidth of revolution harmon-
ics which then damp via Landau damping, thereby heating the
beam. It is evident from the phase-space pictures that the spec-
tral content shows considerable broadening as the instability
approaches saturation.

Simulations have also been used to successfully model the
parametric coupling process showing the observed sequential
coupling to lower sidebands; moreover, the excitationof echoes
has been simulated including the effects of wakefields and dif-
fusion. Work is underway to permit quantitative determination
of the machine impedance from the measurements of nonlinear
behavior.

7 Summary and Conclusions

We have carried out a series of experiments which have in-
dicated the presence of longitudinal three- wave parametric
coupling for beams near marginal stability. The response in
the time domain shows a regular causal coupling from high
frequency toward lower frequencies, accompanied by wave-
overturning and self- trapping of the beam particles.

To explain these effects, we have developed a perturbation
model based on the Vlasov equation which explains the single-
sided coupling as a manifestation of phase and frequency
matching among the coupled modes. In addition, the thresh-
olds for these phenomena are determined by Landau damping
rates, which in the case of our observed non-Gaussian distri-
butions, are vanishingly small. In the case of multiple modes,
the coupling can proceed as a regular cascade through many
harmonics. As such, synchrotrons represent an ideal test bed
for studying such coherent phenomena, and the information



can be used, in principle, as a diagnostic to determine machine
impedance and other dynamical variables of the device. Work
is in progress to quantify the results presented here.

In addition, the phenomenon of beam echoes can be inter-
preted as a form of parametric coupling and we have observed
classic echo formation in our beams. We have derived an ex-
pression which relates the observed echo decay to the rate of
diffusion in the beam and anticipate that this will become a vi-
able means of characterizing beam diffusion.

Finally, we have invoked a full-particle simulation to study
the strongly nonlinear aspects of the mode excitation and sat-
uration. We have identified the onset of nonlinear Landau
damping and the formation of soliton- like structures that has
been studied in the context of narrow-band instability. We sug-
gest that a form of resonant mode coupling studied here may
play a role in the emittance growth of unbunched as well as
bunched beams where the coupling occurs among various syn-
chrtron modes. It is also likely that these phenomena are more
widespread that previously thought, due in part to the strongly
non-Gaussian character of the momentum distribution in our
machines.
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