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The results of the experiments on localized space-charge
waves are presented.  This includes the generation and
propagation of space-charge waves in coasting beams, the end
effect on space-charge waves in bunched beams, and the
application of localized space-charge waves to beam
diagnostics.

I.  INTRODUCTION

Space-charge waves are an important subject in the study
of charged particle beams [1,2].  They have wide applications
in microwave and free-electron laser generation, in particle
accelerators, and in plasmas.  The topic has been studied
extensively.  Experiments and analyses are usually carried out
with sinusoidal signals.  In many applications like in particle
accelerators, space-charge waves are often generated in the form
of localized perturbations due to short time-scale disturbances.
For understanding of beam physics, controlled experiments
with localized space-charge waves would be useful.

We have studied space-charge waves in the form of
localized perturbations in space-charge dominated electron
beams.  Three topics have been investigated, including the
generation of space-charge waves, the measurement of the
geometry factor g, and the effect of bunch ends on space-charge
waves.  These studies have led us to develop a new beam
diagnostic technique.

Our experiments are performed in an electron beam
transport facility consisting of a short-pulse electron beam
injector and a five meter long periodic solenoid focusing
channel.   The key device in the injector is a gridded electron
gun which is able to produce the desired beam parameters with
localized perturbations.  The beam is matched with three
solenoids into the transport channel consisting of 36 short
solenoid lenses with a period of 13.6 cm.  The beam pipe has
a radius of 1.9 cm and the beam radius is less than 1 cm
depending on the beam current, energy and focusing
conditions.  The diagnostic tools along the channel include
five fast wall-current monitors for non-destructive beam
current measurement, and three beam energy analyzers for the
time-resolved beam energy measurement.  At the end of the
channel a diagnostic chamber houses a beam transverse image
identifier and a beam energy spectrometer.  Typical beam
parameters in the experiments are:  beam energy of  2.5 keV
to 5 keV, beam current of 30 mA to 70 mA, transverse
effective emittance (4 x rms) of about 90 mm mrad, and pulse
length of 30 to 70 ns.  The beams are fully space-charge
dominated.

II.  GENERATION OF LOCALIZED SPACE-
CHARGE WAVES

  * Research supported by the US Department of Energy.

Conventionally, space-charge waves are generated in
velocity modulation devices always in pairs, i.e. both slow
wave and fast wave with almost the same amplitudes.  We
have demonstrated that with the introduction of a current
modulation and strong enough space-charge effect, either a
single slow wave or a single fast wave can been produced
experimentally.  Combinations of the two waves with
different amplitude and polarity relations can also be generated.
The experimental results are supported by a more complete
time-domain analysis [3].

In our experiment the initial perturbation is introduced to
the beam by modulating the rectangular cathode-grid pulse
with a small bump.  This corresponds to a positive velocity
perturbation on the beam particles, which in turn produces the
initial density, and current perturbations.  The space-charge
waves then propagate along the beam in the form of localized
perturbations.  The relative strength of the initial current, or
density perturbation over the given velocity perturbation can
vary over a wide range.

Figure 1 shows the beam current waveforms measured at
two different locations along the transport channel.   The slow
and fast waves appearing in the beam current signals, are
generated in almost equal amplitudes and opposite polarities.
The two space-charge waves become more and more separate
from each other with distance of propagation.  This effect is
what is usually discussed in the literature about generation and
propagation of space-charge waves.

Fig. 1.  Beam current waveforms with perturbations measured
at the channel distances of s=0.624 m and s=3.48 m,
respectively (s=0 is the cathode position), where F is
for the fast wave and S is for the slow wave.

Figure 2 shows localized space-charge waves produced
with initial perturbation conditions different from that in Fig.
1.  Only one fast wave with a positive polarity has been
generated on the electron beam current, which propagates
toward the beam front.  By contrast, Fig. 3 shows the beam



current waveforms with only one slow wave, which has a
negative polarity and propagates toward the beam tail.  Similar
results are also obtained from the beam energy measurement.
These new phenomena happen in a space-charge dominated
beam and require specific, initial perturbation conditions on
the beam parameters.

Fig. 2.  Beam current waveforms with only one fast wave,
taken at the same locations as that in Fig. 1.

Fig. 3. Beam current waveforms with only one slow wave as
measured at the same locations as that in Fig. 1.

An one-dimensional cold fluid model has been employed
to investigate the generation of localized space-charge waves in
time domain.  The analysis shows that the perturbed beam
line-charge density Λ1, velocity v1, and current i1 are
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Here h(t) is the perturbation waveform with an amplitude of
unity, the subscripts 0 and 1i are for the unperturbed and

initial perturbation amplitudes, respectively,  and

c s =
eg Λ

0

4 πmε
0
γ5

(1)

is the speed of the waves in the beam frame, with g being a
geometry factor described in next section. The condition for
generating only one fast wave is
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while the condition for producing only one slow wave is
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The wave velocity cs is a measure for the effects of space
charge in a beam.  A beam with a large cs reduces the required
value of the relative current perturbation for a given relative
velocity perturbation in a practical device.  Thus Eqs. (2) and
(3) can be more easily satisfied in a space-charge dominated
beam.

III.  MEASUREMENT OF GEOMETRY FACTOR

The geometry factor g is an important parameter in
longitudinal beam dynamics, which relates the longitudinal
electric field associated with a perturbation in a beam with the
line charge density variation as

E z z, t( ) ≅ −
g

4 π ε
0
γ2

∂Λ z, t( )
∂z

  . (4)

For a cylindrical, unbunched beam of radius a in a pipe of
radius b the g-factor can be represented by the general, long-
wavelength formula

g = 2 ln b
a + α

, (5)

where α is a constant for which different values (1, 0.5, and 0)
can be found in the literature.  Neil and Sessler, in their
original work [4], treated longitudinal instabilities of coasting
beams in particle accelerators.  They used a uniform-beam
model with constant radius a, and derived the relation

α = 1 − r
a( )

2

  , (6)



with r being the radial position within the beam.  This
relation implies that the g-factor, as well as the field Ez, is a
maximum with α=1 on the axis, and reduces parabolically to a
minimum with α=0 on the beam surface with r=a.  Averaging
the field over the beam cross section yields α=0.5.  There is
another model in unpublished papers which yielded α=0 by
assuming a constant volume charge density and perturbed
beam radius.  Hence, there is the question as to which value of
α  should be used.  Further, the question also concerns some
fundamental beam physics such as the correct model, the field
distribution within the beams, surface wave or body wave,
incompressibility of plasmas, etc.

We have developed a novel method to determine the
parametric dependence of the g-factor associated with
longitudinal perturbations in a beam [5].  In this technique,
localized space-charge waves are launched on electron beams in
a periodic solenoidal focusing channel and the propagation
velocities of these waves are measured.  At the same time, the
beam radius a is independently measured by a phosphor screen
plus CCD camera technique.  This leads to an experimental
determination of the parametric dependence of the geometry
factor g on the radius a.

As shown in Fig. 1,  the two localized space-charge
waves move away from each other.  The time interval between
the two waves, which can be measured very accurately at
different locations along the channel, is related to the
traveling distance s by

∆t =
2c s

v
0
2 − c s

2
. s

  . (7)

Figure 4 plots the time interval of the two space-charge waves
at five channel locations for two different phase advances σ0.
The beam energy is 5 keV and the beam current is 56 mA in
this measurement. A least-square fitting of the experimental
data yields ∆t/s, and hence the wave velocity cs according to
Eq. (7); using this value of cs one can determine the geometry
factor g from Eq. (1).
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Fig. 4.  Time interval between two space-charge waves vs.
drifting distance for two different phase advances s0,
as measured by the five current monitors.  The solid
lines are  least-square fitting of the experimental data.

The beam radius a is measured by the phosphor screen
plus CCD camera technique.  Using the two independent,
experimental results for the g-factor and the beam radius a, we
plotted the g-factor against the corresponding beam radius in
the form of ln(b/a) for different experimental conditions as
shown in Fig. 5.  A least-square fitting of these data yields the
relation of the g-factor  as a function of the beam radius a,
suggesting the correct formula for the g-factor is g=2ln(b/a),
i.e. α=0.

Fig. 5.  The measured g-factor vs. ln(b/a).  A least square
fitting of the experimental data yields g≈2.01 ln(b/a)-
0.01, suggesting the correct formula g=2 ln(b/a) as
indicated by the solid line.

Our experimental result agrees with the model which
assumes a constant volume density and perturbed beam radius.
In space-charge dominated beams the perturbed electrical field
within the beam is independent of the radial position.  Though
the volume charge density remains constant, the line charge
density varies with perturbation due to the change of the beam
radius.  The perturbations do not compress the beam plasma
density in this case.  However,  it is inappropriate to apply the
surface wave concept since the perturbed field does penetrate
through the whole medium.

IV.  BUNCH END EFFECT ON SPACE-CHARGE
WAVES

The effect of bunch ends on space-charge waves is
important for the understanding and analysis of longitudinal
instabilities in particle accelerators where perturbations often
reach beam bunch ends.  It is essential to know if the fast
waves reflect off bunch front ends and become the slow waves,
and vice versa.   The previous studies on this subject included
some theoretical work and computer simulations [6-9],
showing the reflection off parabolic bunch ends, defined  as the
vanishing density points.  We have conducted an experiment
to study the end effect with an initially rectangular electron
bunch [10].  The beam "end" here is referred to as the boundary
between the flat region and the finite edge, quite different from
the vanishing density point in previous work.

The experiment is performed in a similar way as in the
generation of space-charge waves, and in the measurement of
the geometry factor g.  However, the initial perturbation is



placed very close to the bunch ends.  The initial test is done
with two waves launched close to the beam real end.  The
reflection of the slow waves is observed.  In order to increase
the signal to noise ratio, a single fast wave close to the beam
front end is employed.   Figures 6 (a-c) show the measured
beam current signals from the first three fast wall-current
monitors.  Each figure contains three scope traces:  the top
one is the beam current waveform without perturbation, the
middle one is the beam current at the same conditions except
that the perturbation is added, the bottom one is the difference
between those two signals and represents the net perturbation
signal on the beam.  The ordinate, which has a conversion
factor of about 0.5 mA/mV (slightly different for each current
monitor), is for the bottom traces only.  The abscissa shows
the relative time scale of the three wall-current monitor signals
along the channel.  In Fig. 6(a) the signals are from the first
current monitor which is s=0.624 m from the electron gun.
The beam energy is 5 keV, the average beam current is 52
mA, and the full width at half maximum (FWHM) of the
pulse is 38.2 ns.  The current perturbation signal has a total
width of about 6 ns and an amplitude of 5.7 mA which is 11%
of the beam current.  The peak of the perturbation is about 3.5
ns away from the beam front "end", defined here as the turning
point from the flat region to the rising edge, while the wave
front of this wave packet is already very close to the beam
front end.  This is a single fast wave which would keep its
shape as long as it stays in the flat region of the beam pulse.
The second wall-current monitor at s=2.39 m sees two
perturbation peaks separated by 6.2 ns, as shown in Fig. 6(b).
This is caused by the splitting of the incident fast wave on the
beam front end, which happens somewhere between the first
and second current monitors.  The peak on the left, i.e. the
transmitted wave, has an amplitude of about 3.1 mA and has
moved down the front edge, while the peak on the right, i.e.
the reflected wave, has an amplitude of 2.3 mA and moves
back towards the beam center.  The sum of these two peaks is
close to the single fast wave amplitude in Fig. 6(a).  Figure
6(c) shows the signals from the third current monitor at
s=3.48 m where the time interval between the two peaks has
increased to 8.6 ns.  The fourth and fifth current monitors see
similar pictures with even larger separation times of the two
peaks.

The propagation speed of space-charge waves can be
measured with the beam current signals.  For the reflected and
transmitted waves in this experiment their speeds are measured
with respect to the beam center which can be determined by
the time-of-flight technique.  The results are plotted in Fig. 7
where t=0 represents the beam center, the stars are for the
reflected wave, and the dots are for the transmitted wave.  For
the reflected wave the least square fitting yields t (ns) = 13.0-
1.46s (m), while for the transmitted wave t (ns) = 11.7+1.49s
(m).  The speed v of these two waves in the beam frame can
be calculated from the relation

dt
ds

= v
v

0
− v( )v

0   , (8)

where v0 is the beam center velocity in the lab frame.   In this
measurement the speed of the reflected wave is about 2.38
mm/ns, the speed of the transmitted wave is about 2.43
mm/ns.

Fig. 6.  Evolution of a fast wave around the beam front end:
(a) A single fast wave before reaching the beam front
end, measured at s=0.624 m;
(b) Transmitted and reflected waves as measured at
s=2.39 m;
(c) Transmitted and reflected waves as measured at
s=3.48 m;
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Fig. 7.  Time interval between transmitted wave and beam
center (dots), and between reflected wave and beam center
(stars).

It is well known that an initially rectangular bunch suffers
edge erosion due to the strong space-charge force at the beam
edges [11, 12].  The top of both beam edges moves into the
flat region with a speed cs and the bottom of the edges moves
outwards with a speed 2cs, where cs is determined by Eq. (1).
For space-charge dominated beams, cs is a significant fraction
of the beam center velocity v0, and the edge erosion is very
rapid.  The experimental parameters yield the speed cs of 2.30
mm/ns.  In the calculation we use for the geometry factor the
value g=2ln(b/a)=2.6, determined in Section III.  Thus, the
three speeds, namely, the speed of the transmitted wave, the
speed of the reflected wave and the beam edge erosion speed cs
have approximately the same values from this measurement.

A dynamic model based on beam impedance matching has
been developed [10] and the analysis shows that under the
condition

k > > 2
z r  ,    i.e.    

z r > > λ
π   , (9)

where zr is the beam edge length and λ  is the perturbation
wavelength, no reflection should occur.  On the other hand, if
the edge length zr is negligibly smaller than λ /π, full
reflection should occur.  In the general situation between these
two extremes, there should be partial reflection and partial
transmission at the bunch end.  The reflection coefficient can
be calculated according to this model.

In the experiment the dependence of the reflected wave
amplitude on the length of the front edge is qualitatively
observed.  When the initial perturbation is far away from the
front end, the reflection is hardly seen in the experiment since
the front edge is too long due to the edge erosion by the time
the perturbation reaches the end.  There is also experimental
evidence showing that the amplitude of the reflected wave is
significantly higher than the transmitted wave amplitude when
the initial perturbation is very close to the front end so that
the reflection happens with a short front edge.

V.  BEAM DIAGNOSTICS WITH LOCALIZED
SPACE-CHARGE WAVES

Through the study of the generation, propagation, and the
bunch end effects of space-charge waves, a new beam
diagnostic technique with localized perturbations has been
developed [13].  Unlike the conventional approach with
sinusoidal waves, a measurement of the propagation of
localized space-charge waves in beam current or energy signals
directly yields the propagation speed cs of the perturbations
according to Eq. (7).  Thus, the geometry factor g can be
calculated according to Eq. (1) after cs is determined.  For a
space-charge dominated coasting beam the average beam radius
can then be calculated by g=2ln(b/a).  This provides a non-
destructive method to diagnose beam size in high-current
accelerators and transport channels.  The measurement of the
reflection of localized space-charge waves is demonstrated in
Section IV.  The other measurements with localized space-
charge waves include the longitudinal space-charge wave
impedance and longitudinal instability, etc.  The details of this
measurement is reported else where [14].
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