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Abstract

The peak power delivered by the klystrons in the NLCTA
(Next Linear Collider Test Accelerator) now under
construction at SLAC is enhanced by a factor of four in a
SLED-II type of R.F. pulse compression system (pulse
width compression ratio of six).  To achieve the desired
output pulse duration of 250 ns, a delay line constructed
from a 36 m length of circular waveguide is used.  Future
colliders, however, will require even higher peak power and
larger compression factors, which favors a more efficient
binary pulse compression approach.  Binary pulse
compression, however, requires a line whose delay time is
approximately proportional to the compression factor.  To
reduce the length of these lines to manageable proportions,
periodically loaded delay lines are being analyzed using a
generalized scattering matrix approach.  One issue under
study is the possibility of propagating two TEon  modes, one
with a high group velocity and one with a group velocity of
the order 0.05c, for use in a single-line binary pulse
compression system. Particular attention is paid to time
domain pulse degradation and to Ohmic losses.

I. INTRODUCTION & METHODOLOGY
EMPLOYED

Electron-positron colliders in the TeV range will require
microwave sources delivering power in the hundred
megawatt range.  The large power demands are alleviated
to some extent through the use of pulse compression
techniques in which the power of the pulse is enhanced at
the expense of the time duration of the pulse.

In order to reduce the length of the delay lines necessary to
store the energy for a pulse compression scheme the
characteristics of a delay line periodically loaded with
thick irises are investigated.  In the SLED-II1 system
(SLAC energy development system using resonant lines),
overmoded circular waveguides are used to store energy
from the early portion of the output pulse from the klystrons.
Once the line is charged the phase of the klystron is
reversed, leading to a discharge of this energy at a reduced
pulse width and enhanced overall pulsed power.  To
achieve a pulse of length 250 ns requires a delay line of
length 36 m.  

The length of the line can be reduced by loading it
periodically with irises, in order to reduce the group

velocity of the wave.  In BPC (binary pulse compression2),
in which the peak power is doubled in successive stages.
At each stage it is required to delay the progress of the
wave from the first half of the pulse with respect to the last
half, so that they arrive synchronously in time at the output
of the stage.  To achieve this end, either two lines are
required, one with a low group velocity and one with a
group velocity near c, or a delay line propagating two
different modes simultaneously with widely differing group
velocities.  We explore this latter method with a TE01 mode
and a TE02 mode propagating in a delay line consisting of a
large number of  inward and outward steps (thick irises)

The theoretical gain of a BPC system is 100%  for a
system consisting of components with infinite conductivity
in which no mode conversion occurs at discontinuities.
However, in reality the system possesses  finite Ohmic wall
losses which both degrade the shape of the pulse and
reduce the overall system efficiency and finite mismatches
occur at waveguide discontinuities.  Ohmic wall losses are
paid attention to by allowing the axial wavenumber to
possess both a real and imaginary component (the latter
corrersponding to the wall losses) and also, by taking into
account transverse wall losses in a multi-mode S-matrix
analysis.

Our initial investigation in the area of multi-mode
propagation down iris-loaded delay lines revealed that the
highest order propagating mode can undergo significant
reflection under resonance conditions (this is a choke
mode), and that the mode below in frequency can also be
delayed as a consequence of the avoided crossing in the
characteristic dispersion curves of the waveguide.
However, it is not possible to operate in a choke mode
regime for lower order propagating modes.  For this reason
we chose the diameter of the waveguide to be 2.32 inches
(the cut-off of the TE02 mode lies at 11.36GHz) and the
outward radial step (negative iris) is chosen to be three
times larger.  The choice of the latter diameter dictates the
group velocity and the point of avoided crossing in the
dispersion curves.

II. APPLICATION OF MODE MATCHING
METHOD TO THE DISPERSION

CHARACTERISTICS OF LOADED
 DELAY LINES

The Brillouin diagrams for the loaded delay lines are
calculated using a scattering matrix method involving



matching the electric and magnetic field at either side of
the aperture region of a periodic structure.   This mode
matching method converges provided a sufficient number of
modes is used to represent the field at transitions in the
geometry of the waveguide.

Firstly, the generalized lossless S-Matrix of a single narrow
to wide transition (NW) is calculated by matching the
complete modally decomposed field at the transition:
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where the q0  and p0 matrices are given in terms Y, the
admittance matrix of the wide transition and $Z, the
impedance matrix of the narrow transition:

q I Za Ya p Za Yt t
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The inner product matrix is given by:
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where the integral is performed over the aperture plane of
the waveguide transition and the nomalised mode functions
e and $e  correspond to circular waveguide mode functions3

of the wide section and the narrow section respectively.
The NW matrix is cascaded with the wide to narrow (WN)
transition to give the overall narrow to wide to narrow
(NWN) scattering matrix for all modes (including
evanescent modes).  This matrix is converted into a multi-
mode transmission or wave-amplitude matrix by applying
the matrix relation:
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Finally, the eigenvalues of the multi-mode wave-amplitude
matrix,  for a given frequency, are of the form exp(jΨ).
Real values of Ψ correspond to modes within the pass-band
of the Brillouin diagram.    In  practice twenty or more
modes  are necessary  in order to adequately satisfy the
boundary conditions.  For a single waveguide mode
propagating within the structure it is sufficient to consider a
single mode wave-amplitude matrix (all modes are of
course retained in the S-matrix calculation).  However, for
two propagating modes it is necessary to maintain the full-
mode wave-amplitude matrix in the calculation of the
eigenvalues.  

Thus, the method proceeds with a search for real phase
values as a function of frequency;  the dispersion diagram
is constructed by inverting the resulting phase dependence
on frequency.  Complex phase values of purely imaginary
content are rejected as this represents waves within the
stop-band region.

III. DISPERSION CHARACTERISTICS OF
MULTIPLY LOADED DELAY LINES

The narrow and wide transition are .5 inches and  .53 inches
in length respectively.  The latter dimension was chosen in
order to allow at least one radial mode to propagate within
the wide transition (i.e. the negative iris region).  The
radius of the narrow waveguide, viz, 1.16 inches, was
chosen with a view to allowing two azimuthally symmetric
TE modes to propagate in order  to operate close to the cut-
off of the upper band TE mode.  The below fig. 1 shows the
characteristic dispersion diagram for the chosen loaded
delay line.  The dashed line also indicated is the
characteristic velocity of light line.
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Figure 1:  Brillouin Diagram for a Loaded Delay Line

The wide transition (i.e. the negative iris) has the effect of
splitting the smooth wall dispersion curves.  This avoided
crossing in the dispersion curves allows one to have two
waves propaging down the periodic structure.  At a
frequency   of 11.503 GHz there is simultaneously a high
group velocity wave of  -0.7c (i.e. a backward wave) and
low group velocity wave of 0.05c.   This allows for the
possibility of operating a binary pulse compression system
in a a single loaded delay line.

IV. PULSE PROPAGATION THROUGH
SLED DELAY LINES

The progress of the pulse through the structure is monitored
by the convolution of the input signal with the time
response of the loaded delay line.   To model the
propagation of a pulse through the SLED delay lines we
require the frequency response function of the loaded
waveguide.  The inverse transform of the product of the
response function and the Fourier spectrum of the pulse
allows the progress of the pulse through the structure to be
monitored. The response function is obtained by evaluating
the overall scattering matrix of the structure.  

The effect of Ohmic losses is an important consideration.
Wall losses are paid attention to using wavenumbers in
which Ohmic  losses are taken into account utilizing third
order perturbation in the exact eigenvalues (the first order
perurbation method is invalid close to the cut-off region of



the waveguide) and also by calculating the scattering
matrix of each NW transition incorporating Ohmic losses
due to the presence of the transverse wall.  The generalized
scattering matrix of a single transition is given by:
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I is the unit matrix, at  is the transpose of the matrix of inner
products of the nomalised mode functions, and Rm

represents the wall resistance of the waveguide.  In the
limit of infinte wall conductivity (4.1) becomes (2.1).  This
scattering matrix is cascaded with succeeding matrices to
give the overall matrix of the structure in the frequency
domain.   

The input trapezoidal pulse with of duration 250 ns and a
sharp rise and fall time of 5 ns, together with the amplitude
of its Fourier spectrum are illustrated in the below fig. 2.
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Figure 2: Input Waveform & Fourier Spectrum

Also shown in fig. 3 is the waveform corresponding to the
propagation of a TE01 mode through one thousand and
twenty four cells .  The shape of the leading edge of the
pulse is degraded by presence of the dispersive loaded
delay line.  However, even for this particularly large
number of irises the overall shape of the pulse suffers
remarkably little degradation.    Ohmic wall lossses of the
system are of course unavoidable  and this accounts for the
diminished amplitude and overall area of the transmitted
pulse.  The TE02  suffers substantially larger Ohmic wall
losses and to reduce these losses for multi-mode
propagation one must use superconducting waveguide.
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Figure 3: Pulse Propagation Through Loaded Delay Line

V. DISCUSSION

The concept of using a single-line iris-loaded waveguide to
simultaneously delay the progress of two input pulses has
been demonstrated, but the losses associated with the
higher order mode (TE02 in this case) have been shown to
be too high to be acceptable for practical purposes, unless
one is prepared to utilize superconducting iris-loaded
waveguide.    However, a superconducting waveguide will
impose a limit on the magnetic field that is tolerable and
so limits the power  transport through the system.
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