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Abstract
Synchrotron magnet strings is able to be regarded as a 6

terminal ladder circuit. It can be shown that the voltage and
current has two different modes of resonant property. this
mode is able to be decoupled by the transformation. In
presence of symmetric configuration, it is further shown
that the mode are reduced to two orthogonal mode of
normal and common mode which enables us to find the
analytical solution.

I. INTRODUCTION
In a synchrotron where a current of a magnet string is

excited trapezoidally, a reproducibility, a stability and a
tolerance of a ripple content of the excitation current is
stringent due to a slow beam resonant extraction property of
the synchrotron. Among others, the relative ripple content is
one of the most important and required to be a ppm level or
less. Most of the synchrotron utilizes a thyristor controlled
power supply generating voltage of logical ripple which is a
multiple of number of thyristor firing pulses. There is also
an illogical ripple which is due to imbalance among the
phase and amplitude of primary line voltage or noise from
the sensor such as DCCT where the frequencies are integer
fractions of the fundamental harmonic of 50 Hz.
Furthermore a spike voltage is induced across each
thyristor when the thyristor is turned on and off. The spike
frequency ranges between a few kHz to a tens of kHz
depending upon magnitude of capcitances and other
parameters of a relevant circuit. This thyristor spike has
long been one of the major causes limiting the performance
of the synchrotron power supply. The spike is regarded as
source of a high frequency effective ripple component. A
close look of the spike reveals that amplitude of a train of
spikes is modulated by lower illogical frequencies and
considered to be other source of  illogical ripple.

In conventional research and development of a power
supply illogical ripple have been suppresssed by improving
an imbalance among phases of primary AC voltages and
equalizing a timings of firing pulses of each thyristor or ba
an active filter and a band-pass filter.

The spikes and logical ripples are suppressed by low
pass static filter. In spite of those efforts, achieving the
ripple content of ppm level has been difficult.

Reviewing the existing lower limit of the ripple
performance of the conventional technology, we proposed a
model which includes a stray capacitance of the coil to the
ground [1,2,3,4]. In it, a magnet string is modeled as a
ladder circuit, which is a repeated circuit of lumped
element of L, C and R. The excitation coils of the magnet
are divided into the upper coil and the lower coil. The
upper coil is connected to neighboring coil in series instead

of connecting to its lower coil and again connected to the
separated upper coil of next neighboring coil and so on. So
does the lower coil. the magnet core is regarded to have
ground potential and all the magnet core are connected in
series by the erth line. The model circuit of an unit cell is
shown in Fig. 1.
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Fig. 1: Unit cell of the six terminal magnet string. ρ
represents the bridge resistor as well as the ac loss of
the magnet.

In conventional synchrotron magnet strings, although the
earth line is not physically set up, the capacitance between
the excitation coil and the magnet yoke can not be
neglected and a similar six terminal circuit as Fig. 1 may
be applied in analyzing the magnet string.

II. ANALYSIS
Let us designate the relevant parameter of the voltage

and the current of the upper coil U and I and the lower coil
V and J. The suffix of the input and output voltage and
current is designated as 1 and 2. We then write the transfer
matrix of the voltage and the currrent in general as
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with

ZM=ZM1=sM12=ZM1=sM21  .

Each component of the transfer matrix of eq. (1) is non-zero
and have finite value. the pair of the voltage and current of
( U, I ) and ( V, J ) is considered to be a representation of
a pair of two different mode. Non-zero component of the
matrix signifies that the two mode is coupled each other.



By intuition, one is able to find the equation for the sum
component and difference component of the voltage and

current which is written as,
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It is easily shown from the equation (2) that when the
magnitude of the element of the upper coil and lower coil
is identical, the pair of the sum of (U+V) and (I+J) and the
difference of (U-V) and (I-J) are linearly independent. The
former sum component is defined as the normal mode and
the latter difference component is called the common
mode. The decoupled equation is treated as an four
terminal circuit and it can be shown that analytical form of
the solution is available [5]. In HIMAC, we have
constructed not only the magnet string but the power supply
in a symmetrical fashion such that normal mode and
common mode are decoupled each other and successfully
achieved the power supply system of the unpredecented
ripple level, below ppm [5]. In conventional configuration
of the magnet string, the elements of the magnet string of
the coils are not separately wound and the earth line is
obscure. The symmetricity is not assured and one may have
to solve the coupled eq. (2) or (3).

We found the coupled equation (2) is able to be
decoupled by an eigenvalue method. We start from the
equation known as the telegram equation or the
transmission line equation. The transfer matrix obtained
from the equation still holds for that of the ladder circuit.

Let us consider the ladder circuit with the capacitance
between the coil and the grounded magnet yoke, a
magnitude of an outgoing current I0  flowing into the load
and that of incoming current J0 returning to a power supply
are not necessary to be identical. They could be bypassed
via capacitance and flow back to the power supply side
through a ground line. Furthermore voltages developed
between a positive input U0 and a negative input V0 also
may differ.

This voltage difference may be due to a flip-flop nature
of a thyristor firing timing or difference of an asymmetric
configuration with respect to the ground line of the magnet
string.

Equations for voltage of U and V are written as,
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where z11', z12', z21',and z22'
 are
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and the ' denotes the impedance per unit length (m). This
equation is valid both for the transmission line model and
also for the ladder circuit model; z is regarded as a
coordinate along a propagation direction of the voltage
wave for the former case and a discrete coordinate of the
magnet number for the ladder circuit. Similar equation
holds for the current I and J.

Two set of equations designate the present of two mode
of voltage and current in the magnet string. Indeed this
formulation could be extended to N mode equations of a
system (N-1) signal lines and a single ground line. As is
shown by the equations, voltage U and V are coupled.
These coupled voltage propagates down along the magnet
strings. The resonance characteristic also shows the
coupled property. In conventional synchrotron magnet
strings where the common mode ripple is not suppressed,
there is a possibility the normal mode ripple is mixed with
common mode ripple and its performance is not improved
as expected.



In general, it is tedious to solve two simultaneous
second order differential equations. There is an orthodox
method to solve this problem known as an Eigenvalue
problem. In Eigenvalue problem, mode-decoupling is done
by finding a proper transformation matrix.

We need to transform a matrix of,
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i.d., the diagonalization is required.
After some algebra, one can find, multiplication of a

following matrix P from right and P-1 from left to M:

M P M P" '= −1 (11)

with

P

q

Z
q

Z

=
−

















1

1

21

12

'

'

(12)

where q is expressed as,
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The above discussion shows that in general case of
asymmetric 6 terminal circuit, the mode separation is
possible by the transformation given by eq. (12). this
transformation enables to find the analytical expression in a
closed form.

In HIMAC, the magnitude and location of every
possible elements are set to be equal with respect to the
earth line which is defined as “symmetry.” In this case,
considerable simplification is possible.

In symmetric case, where Z1' and Z2' are equal, one
obtains for M',
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Equation (14) indicates two mode of coupled voltage is
reduced to the decoupled normal mode and common mode
voltage.
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