
  

External bending 

magnet

External bending 

magnet

Centre bending 

magnet

ρ φ1 1 ρ φ2 2 ρ φ1 1

  

External bending

magnet

Defocusing

quadrupole


of strength k 

Half

Centre bending


magnet

Focusing

quadrupole


of strength k 

L1

 1

L2

2

L3

A NEW FAMILY OF ISOCHRONOUS ARCS

G. Guignard and E.T. d’Amico, CERN, 1211 Geneva 23, Switzerland

For the Compact Linear Collider (CLIC), the bunch time struc-
ture should be preserved in the injector complex, especially in
the recirculation arcs and after the final bunch compression stage
up to the main linac injection. At the same time, because the
transverse emittances are so tiny, their growth, essentially due to
synchrotron radiation, should be kept as low as possible. In other
projects, several isochronous arcs have been designed numeri-
cally to meet these requirements for a particular arc layout. These
designs cannot be easily adapted to different configurations. The
purpose of this study is to obtain analytically the main param-
eters of a new class of isochronous arcs which can be quickly
tailored to special applications. Some of these are presented and
they emphasize the small transverse emittance growth achievable
even at large injection energy while keeping the arc radius in a
reasonable range. Because locally the first-order anisochronicity
is fully cancelled, higher-order contributions are less important
than in other designs.

I. INTRODUCTION

In the Compact Linear Collider (CLIC) many considerations
(wake-field effects, high luminosity) require that the bunch time
structure should be preserved after the last bunch compression
has taken place. This condition in general cannot be fulfilled
when the beam passes through a deflecting system because of
the difference in length between the individual orbits due to the
energy spread and to the different initial conditions. The system
is called isochronous when it does not change the bunch time
structure. It can be proved [1] that in the linear approximation
such a system should be nondispersive and such that:∫ S2

S1

D(s)

ρ(s)
ds = 0 (1)

whereD(s) is the horizontal dispersion,ρ(s) the radius of cur-
vature andS1, S2 are the positions of the beginning and end of
the insertion.

The relation (1) shows that contributions to the integral come
only from deflecting magnets and off-centred quadrupoles.

Several schemes of isochronous arcs have been developed [2],
[3]. They are based on lattices encompassing several deflecting
magnets where the integral (1) is minimized numerically over
the whole arc. The purpose of this study was to investigate
analytically an isochronous module with the minimum number
of deflecting magnets. The juxtaposition of identical modules
allows the building up of a whole family of isochronous arcs
depending upon some parameters which can be adjusted to meet
special design constraints, such as minimization of the emittance
growth due to synchrotron radiation.

It can be proved [1] that the minimum number of deflecting
magnets in an isochronous module is three. For reasons of sim-
plicity we have chosen a symmetric module about the mid-plane
of the central deflecting magnet.

II. ISOCHRONICITY CONDITION

Let us consider an isochronous insertion with three bending
magnets (see Fig. 1), where we neglect for the moment the pres-
ence of other magnetic elements assumed to be perfectly centred.
To simplify the algebra the bending magnets will be treated as
sector magnets of the same length but of different curvature radii
ρ1 andρ2, the deflection angles being respectivelyφ1 andφ2.

Figure 1: Isochronous insertion: bending magnet configuration.

Assuming that the dispersion and its derivative are zero at the
entrance of the first magnet, it is easy to show that the isochronic-
ity and symmetry conditions yield the following expressions for
the dispersion and its derivative at the entrance of the centre
magnet [4]:

Dj = ρ2
[
D′

j ctn(φ2/2) + 1
]

D′
j = −ρ1

ρ2

(
3

2
φ1 − sin φ1

)
. (2)

III. INSERTION DESIGN

To transport the beam through the insertion described in Fig.
1, we have to add quadrupoles between the bending magnets.
The simplest configuration is a FODO, as shown in Fig. 2 where
only a half-insertion is drawn.

Figure 2: Layout of half isochronous insertion.

The three spacesL1, L2, L3 and the two quadrupole strengths
k1, k2 have to be chosen in order for the expressions (2) to be
satisfied. After some manipulation of the transfer matrices (see
Appendix A of reference [4]) the following expressions for the
three drift lengths as functions ofk1, k2 and of the free parameter
1L3 = L3 − Dj /D′

j , may be obtained:

L1 = a
C2q1

C1q2
(1L3 + q2) − l + q1

L2 = q1 − q2 + b

1L3 + q2



               

Table 1: Permitted ranges ofk1, k2, 1L3

q2 < q1 − d and1L3 > Max{d − Dj /D′
j , −q2}

k1 ≤ Min{k(1)
1 , kmax} q2 > q1 − d and Max{d − Dj /D′

j , −q2} < 1L3 < 1L(1)
3

k(1)
1 < k1 ≤ Min{k(2)

1 , kmax}
√
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{
acosh(Max{1,C∗

2})
lq

,

√
k(1)

2

}
and

Max{d − Dj /D′
j , 1L(2)

3 } < 1L3 < 1L(1)
3

k(1)
1 < k1 ≤ Min{k(2)

1 , k(3)
1 , kmax}

√
k2 <

acosh(C∗
2)

lq
and Max{d − Dj /D′

j , 1L(2)
3 } < 1L3 < 1L(1)

3

k(2)
1 < k1 < Min{k(3)

1 , kmax}
√

k2 < Min

{√
k(1)

2 ,
acosh(C∗

2)

Lq

}
and Max{d − Dj /D′

j , 1L(2)
3 } < 1L3 < 1L(1)

3

k(1)
1 < k1 < kmax q2 < q1 − d and1L3 > Max{d − Dj /D′

j , 1L(2)
3 }

wherek(1)
1 , k(2)

1 , k(3)
1 , k(1)

2 are the solutions of the following transcendental equations:

(l + d)

√
k(1)

1 tan(Lq

√
k(1)

1 ) = 1,

√
k(2)

1 = cos(Lq

√
k(2)

1 )(l+2d)+
√[

l cos(Lq

√
k(2)

1 )
]2

+4d(l+d)

2 sin(Lq

√
k(2)

1 )d(l+d)

(l + d)

√
k(3)

1 sin(Lq

√
k(3)

1 ) − cos(Lq

√
k(3)

1 ) = a,

√
k(1)

2 sinh(lq

√
k(1)

2 ) − √
k∗

2

∣∣∣∣cosh(lq

√
k(1)

2 ) − C∗
2
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andC∗
2, k∗

2, kmax, 1L(1)
3 , 1L(2)

3 , are given by the expressions
C∗

2 = aq1

C1(l−q1+d)
, k∗

2 = 1[
d−q1

(
1+ C∗

2
aC1

)]2 , kmax = π
4L2

q
, 1L(1)

3 = b
d+q2−q1

− q2, 1L(2)
3 = q2C1

aq1C2
(l − q1 + d) − q2

L3 = Dj /D′
j + 1L3 (3)

where

l = ρ1 tan(φ1/2), a = −D′
j / sin(φ1) ,

b = q2
C2

(
q2
C2

+ q1
aC1

)
, qi = Ci

Si
√

ki
,

C1 = cos(Lq
√

k1), S1 = sin(Lq
√

k1) ,

C2 = cosh(Lq
√

k2), S2 = sinh(Lq
√

k2)

(4)

Lq being the quadrupole length. Table 1 gives a subset of the
ranges ofk1, k2, 1L3 for which the three drift lengths are larger
than a given valued, when

1

q1
≤ 1

l + d
+ 1

Lq/2 + d
.

This can be shown to be the case for most of the usual hard-
ware configurations. The full set of conditions may be found in
AppendixC of [4].

IV. ARC DESIGN
To build up an arc we have to connect as many insertions as

are necessary to obtain the desired deflection. To avoid large
excursions of the betatron functions, the easiest way is to take
advantage of the insertion symmetry and to ensure that the values
of the Twiss parameters at both ends of a module composed of
an insertion as described above and of a matching section are
the same. It is easy to show that this is possible only when the
betatron function and its derivative at both ends of such a module
are respectively:

β0 =
√

1 − m2/|m21| and β ′
0 = 0 (5)

wherem = m11 = m22 andm21 are the elements of the transfer
matrix for the module. It is very difficult to do without the match-
ing section while satisfying these constraints in both planes. We

have preferred to choose as a matching section half a triplet at
both ends of the insertion to obtain a module with−1 < m < 1
in both planes. The Twiss parameters at the end of the transfer
line injecting in the arc should then be matched to the values
given by the expressions (5). In order to reduce to a minimum
the contribution of magnetic errors and the sextupole effects we
add the condition that the phase advance over a small number of
modules should be an integer multiple ofπ in both planes.

After some manipulations it is possible to show that the growth
of the normalized horizontal emittance1γεx is in good approx-
imation inversely proportional to the fourth power of the number
of modules required to assemble an arc [4]. The diameter of a
full-circle arc is of course proportional to the number of modules.
Clearly a compromise must be found between these two very im-
portant design parameters. To find it we have written a simple
interactive program as an Excel spreadsheet which permits one
to quickly obtain the main features of a 2π arc according to dif-
ferent choices of the number of required modules, of the ratio
between the radii of curvature of the external and central bending
magnets, and of the gradients of the two quadrupoles and of the
distance1L3.

V. APPLICATIONS

In each branch of CLIC, two 360-degree arcs are needed to
guide the particles in the reverse direction, one at 3 GeV for the
drive beam and the other at 9 GeV for the main beam. These arcs
should not perturb the bunch length, which is carefully chosen
for optimum performance at the final interaction region in the
main linac and for power transfer efficiency in the drive linac.
Thus they have to be isochronous. A preliminary study of them
has been carried at the first order using the tools described in
the previous section. The results are summarized in Table 2 and
Figs. 3 and 4.

The less stringent constraint on the horizontal emittance



growth for the drive beam allows one to obtain a smaller arc
radius than could be expected from the energy scaling alone.
Thus larger horizontal emittance growth would be acceptable
but difficult to achieve due to limitations in optics matching.

On the contrary for the main beam the fractional horizontal
emittance growth (∼ 7.4%) cannot be further relaxed to obtain
a smaller arc radius because it would induce a significant loss of
luminosity.

VI. DISCUSSION

This report shows the existence of a parametric family of
isochronous arcs and analytical procedures to design them. Sim-
ple interactive programming tools have been developed to im-
plement these procedures which speed up the search of near
optimized isochronous arcs. The first-order anisochronicity is
fully eliminated and the low values of the dispersion contribute
to the second-order effects as well as to limiting the horizontal
emittance growth. On the other hand, this makes the correction
of the chromaticity with sextupoles more difficult because they
cannot be placed where the dispersion is sufficiently high. This,
however, becomes a severe problem when the arc is part of a ring
through which the beam passes several times. Further investi-
gations will be aimed at limiting these effects and studying the
energy spread acceptance of such arcs. Tracking should provide
results on the behaviour of this family of isochronous arcs at
higher orders.

Table 2: Parameters of the 360-degree isochronous arcs

Parameter 3 GeV arc 9 GeV arc
Number of insertions 3 48
Length of bending magnet 1.8 m 1 m
Quadrupole length 0.3 m 0.5 m
Gradient of the focusing Quad 55 T/m 60 T/m
Gradient of the defocusing Quad 55 T/m 60 T/m
L1 1.366 m 2.068 m
L2 0.227 m 0.925 m
L3 1.164 m 0.310 m
Overall arc diameter 15 m 214 m
Horizontal phase advance π /2 π /2
Vertical phase advance π /3 π /3
Nominalγ εx (m·rad) 5× 10−4 2.5 × 10−6

1γεx (m·rad) 8.16× 10−6 1.84× 10−7

Figure 3: Optics functions of the 3 GeV isochronous module.

Figure 4: Optics functions of the 9 GeV isochronous module.
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