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Abstract

An optimization scheme for final focus systems is discussed and
applied to the NLC design. The optical functions at the defo-
cusing sextupoles, the sextupole strength, and the length of the
system must obey eight conditions that are imposed by the spot
size increase due to higher-order aberrations, the effects of syn-
chrotron radiation in the bending magnets, power supply ripple,
magnet vibration tolerances, and the estimated orbit stability at
the sextupoles. These eight conditions determine the minimum
optimum length of the system. The NLC final focus design was
shortened to this optimum.

I. INTRODUCTION
In this report, an optimization scheme for final focus systems

is proposed. The spot size increase by higher-order aberrations,
synchrotron radiation effects, and the tolerances on power sup-
ply ripple, mechanical vibrations, and orbit stability depend on
the length of the final focus system. This dependence results in
scaling laws that are discussed in the next section. To evaluate
these for the NLC final focus system, the values of certain length-
independent parameters have been extracted from a preliminary,
not optimized final-focus design. Based on these values, the opti-
mum choice for dispersion and beta functions at the Y-sextupoles,
for the sextupole strength and the length of the bend section are
found. We roughly follow the analysis presented in Ref. [1].
However, the final optimization procedure is different.

II. SCALING LAWS
A. A General Telescope

We assume that the final focus system contains a horizon-
tal and a vertical chromatic correction section (CCX and CCY)
which are separated by a beta-exchange module (BX). Consid-
ering only quadrupole magnets of strengthki , the Hamiltonian
for either one of these three modules may be written

H = − δ
2

∑
ki (xi + ηi δ)

2+ δ
2

∑
ki y

2
i . (1)

We now transform to the starting point of the module using the
sine- and cosine-like trajectories,xi = cx

i x1+sx
i x′1, yi = cy

i y1+
sy
i y′1, to define the chromatic coefficients

cx,y ≡
∑

ki c
x,y 2
i , cx,y′ ≡ 2

∑
ki c

x,y
i sx,y

i ,

cx,y′′ ≡
∑

ki s
x,y 2
i ,

dx ≡
∑

ki ηi c
x
i , dx′ ≡

∑
ki ηi s

x
i , (2)

and get

H = − δ
2

[
cxx2

1 + cx′x1x′1+ cx′′x′21 + δdxx1

+δdx′x′1
]
+ δ

2

[
cyy2

1 + cy′ y1y′1+ cy′′ y′21
]

(3)
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By symmetry,cx′ = dx = cy′ = 0 for CCX and CCY, and we
assume the same for the BX. Theβ-dependence is then extracted

from the coordinates,x1 =
√
βx

1 x′, andx′1 = x√
βx

1

, y1 =
√
β

y
1 y′,

y′1 = y√
β

y
1

, wherex, x′, y, y′ are now normalized IP-coordinates,

and length-independent chromatic coefficients are introduced,
dx′ = d̂x′L, cx,y = c L , cx′,y′ = ĉx′,y′ , cx′′,y′′ = Lĉx′′,y′′ . The
Hamiltonian (3) is then written

H = − δ
2

[
ĉx β

x
1

L
x′2+ ĉx′′ L

βx
1

x2− ĉyβ
y
1

L
y′2

−ĉy′′ L

β
y
1

y2+ 2δLd̂x′ 1√
βx

1

x

]
. (4)

Finally, the dispersion at the y-sextupoles is converted into a
length-independent parameterr̄12 via

η = θBLr̄12 , (5)

whereθB is the bend angle of the last bending section at the end
of the CCY, andL the total length of the final focus system.

B. The CCX and the BX

We rewrite Eq. (4) for the CCX in the form

e−HC X ≈ e−
1
2 F(x′,y′)e−G(x,y)e−

1
2 F(x′,y′) , (6)

where

F(x′, y′) = − δ
2
ξC X

x x′2+ δ
2
ξC X

y y′2 (7)

G(x, y) = − δ
2

[
ĉx′′ L

βx
F

x2− δ
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ĉy′′ L

β
y
F

y2+ 2δ2d̂x′ L√
βx

F

x

]
,

and we have introduced the horizontal and vertical chromaticities
ξC X

x ≡ ĉx β
x
F

L , ξC X
y ≡ ĉy β

y
F

L . The Hamiltonians of the two X-
sextupoles at the beginning and the end of the CCX, denoted by
1 and 2, read

H1 = H̃(xF + ηFδ, yF ) , (8)

H2 = −H̃(xF + ηFδ, yF )+ kFηFδ(x
2
F − y2

F ) , (9)

respectively, wherẽH is the usual sextupole-Hamiltonian

H̃(x, y) ≡ 1

3!
kF (x

3− 3xy2) , (10)

the termkF denotes the integrated sextupole strength andxF ≡√
βx

F x′, and yF ≡
√
β

y
F y′ are the coordinates at the first X-

sextupole. Now the total CCX, including sextupoles, is

e−H1e−
1
2 F(x′,y′)e−G(x,y)e−

1
2 F(x′.y′)e−H2 = e−GC X

R e−HC X
R , (11)



             
where

GCC X
R ≡ G

(
x + ∂

∂x′
(H1+ F), y+ ∂

∂y′
(H1+ F)

)
(12)

and
HCC X

R ≡ FCC X+ kFηFδ(x
2
F − y2

F ) . (13)

In much the same manner the chromaticity can be propagated
through the BX to give

H B X
R = F B X + FCC X+ kFηFδ(x

2
F − y2

F ) (14)

and a termCB X
R analogous toCCC X

R . The generatorsGCC X
R and

GB X
R contain fourth- and fifth-order terms, which have to be

small.

C. The CCY

The Hamiltonian (14) to be carried through the CCY is of
the form

H ≈ − δ
2
ξ (3)x x′2+ δ

2
ξ (3)y y′2+ . . . , (15)

where

ξ (3)x,y ≡ ξC X
x,y + ξ B X

x,y +
1

2
ξCY

x,y − 2kFηFβ
x,y
F − kDηDβ

x,y
D , (16)

and it interacts with a term analogous toG(x, y) above,

GCY(x, y) = − δ
2

ĉx′′
CY

L

βx
D

x2− δ2Ld̂x′
CY

1√
βx

D

x + . . . . (17)

The largest aberrations generated by the kick inx is a
δ3-dispersion that could, at least in principle, be canceled down-
stream, and aδ3-chromaticity, from which

βx
D ≥
√

15
1xδ

3ξ (3) 2
x ĉx′′

CYL , (18)

where1x ≈ 1 denotes the maximum tolerable relative increase
of the horizontal spot size. Similarly, they-kicks generate a
third-order vertical chromaticity and ax′2y′2δ-term, giving rise
to the two conditions

√
15δ3ĉy′′

CY

L

β
y
D

ξ (3) 2
y ≤ 1y , (19)

√
3δĉy′′

CYk2
D Lβx

Dβ
y
Dεx ≤ 1y , (20)

where1y ≈ 1/
√

2 (see Section F).

D. Synchrotron Radiation and Chromaticity

The beam size increase, due to the additional energy spread
δrms, induced by synchrotron radiation inside and behind the
CCY and to the uncompensated doublet chromaticity,ξ F D

y ≈
2ξ (3)y , has to be small:

2δrmsξ
(3)
y < 1E (21)

where1E ≈ 1 denotes the maximum tolerable relative increase
of the vertical spot size due to synchrotron radiation (see later),
and the energy spreadδrms is [3]

δ2
rms ≈ 2

55

24
√

3

1

2π
reλeγ

5 θ
3
B

L2
B

. (22)

Here,L B denotes the length of the last bending section behind the
CCY, and the factor 2 accounts for the contributions from bending
magnets in the center of the CCY. The length of the central section
is more than two timesL B, but in this case about half the doublet
chromaticity is compensated by the final sextupole. Combining
Eqs. (5), (20) and (21) and usingα ≡ L

L B
we find

ηD ≤ r̄12

(
1E

2ξ (3)y

) 2
3
(

L52π

( 55
24
√

3
) reλeγ 5α2

) 1
3

. (23)

The overall chromaticity balance reads approximately

ηDkDβ
y
D ≈ ξ (3)y +

b

2
ĉy

CY

β
y
D

L
, (24)

whereb ≈ 2.

E. Long-Sextupole Effect

A long sextupole generates octupole-like aberrations [2],
which impose a limit on the tolerable sextupole length. For two
sextupoles separated by a−I , these aberrations are described by
the Hamiltonian

Hls = k2
Dl D

24
(βx 2

D x′4+ 2βx
Dβ

y
Dx′2y′2+ β y 2

D y′4) , (25)

wherel D denotes the sextupole length. From the resulting in-
crease of the vertical spot size, we deduce

k2
Dl D

6
(
√

3βx
Dβ

y
Dεx +

√
15β y 2

SDεy) ≤ 1y . (26)

Decomposing the integrated sextupole strength askD = l Dk̃D, it
follows that

l D ≤
(

61y

k̃2
D(
√

3βx
Dβ

y
Dεx +

√
15β y 2

D εy)

) 1
3

(27)

Assuming a pole tip field of 0.5 T at a radius of 5 mm, the
maximum value of̃kD is about

k̃D,max≈ 24 m−3 at 500 GeV beam energy. (28)

F. The1-Values

To determine the optimum relative spot-size increases1x,
1y, and1E, we take1 ≡ 1E = 1y. Usingβ∗x,y ∼ 1/1x,y

(which follows from ξ (3)x,y ∼ 1/β∗x,y, βx,y
D ∼ 1/β∗x,y, and Eqs.

(18), (19), and (20)), we find

σ 2
y ∝

1

1
(1+ 212) and σ 2

x ∝
1

1x
(1+12

x) , (29)

from which the smallest spot size is obtained for

1y ≈ 1E ≈ 1√
2

and 1x ≈ 1 . (30)



                   

G. Vibration Tolerance and Power Supply Ripple

Denoting the horizontal vibration amplitude of the Y-
sextupoles (this is equivalent to an orbit-change due to a vibrating
quadrupole between the sextupole-pair) by1x, we find

ksβ
y
D ≤

1

51x
, (31)

allowing a maximum spot size increase of 2% due to the induced
waist shift. Moreover, if we suppose that the strength of all
quadrupoles in the CCY varies by a factor1k/k due to power
supply ripple, it follows

β
y
D ≤

L

51k
k ĉy

CY

. (32)

This has to be compared with inequality (19).

III. OPTIMIZATION
The minimum length of a final focus can be derived from the

eight conditions (18), (19), (20), (23), (24), (26), (31) and (32).
The achievable orbit stability at the second Y-sextupole regarding
perturbations internal to the CCY,1x, determines the maximum
value ofkDβ

y
D via Eq. (31), while Eq. (18) gives a minimum

value ofβx
D/L. If these two limits are inserted into Eq. (20), a

lower bound onβ y
D/L2 is obtained. Inequality (23) shows that

the smallest value forηD allows the shortest lengthL. Ideally,
therefore, we would like to choose the smallest value forβ

y
D/L

on the right-hand side of (24). However, a compromise has to
be made in order to keep the sextupole strengthkD at a tolerable
level. The semi-arbitrary requirement that the second term on
the right-hand side contribute about 15% to the total may be a
reasonable choice. Inserting the optimum value of the dispersion
ηD, deduced from Eq. (24), into Eq. (23), the minimum lengthL
follows. It still remains to be verified whether the usually looser
conditions (19), (26) and (32) are fulfilled.

As an example, from the initial design of an NLC final focus
at 1 TeV, we extract̄r12 ≈ 0.062,b ≈ 1.6, ĉy

CY ≈ −24, ĉy′′
CY ≈

−0.67, ĉx′′
CY ≈ 0.12, ξ (3)x ≈ −2000 (forβ∗x ≈ 25 mm),ξ (3)y ≈

15 800, andα ≈ 34. The rms-energy spread is taken to be
δ ≈ 2×10−3, the horizontal normalized emittanceεx N ≈ 5 mm
mrad, and the emittance ratioεx/εy ≈ 100.

Assuming that at the second sextupole an orbit stability of
1x ≈ 230 nm can be achieved, the optimum final-focus param-
eters are obtained by the outlined procedure. They are listed in
Table I and compared with the initial and the present final focus
design. The length of the final focus was shortened by about a
factor of two. This was achieved by lowering the value of dis-
persion and beta functions at the Y-sextupoles, while increasing
the sextupole strengthkD. The present design is even somewhat
shorter than the estimated optimum. The reason for this is that
new sextupoles, similar in spirit to those proposed by Brinkmann
[4], have been added throughout the system, which locally cor-
rect the chromaticity in each module. For more details on the
NLC final focus, see Ref. [5].

IV. SUMMARY
We have derived eight scaling laws that characterize the

length-dependent effects in a final focus system, and can be used
as a guideline for optimization. The optimum length of the NLC

Table I

Initial and optimized CCY parameters for an NLC final focus system at 1 TeV

c.m. energy.

Parameter 1 TeV
Initial Optimum Present

β
y
D [km] 160 140 120

ηD [mm] 45 24 23
kD [m−2] 2.8 6.4 7.4

l D [m] 0.4 0.4 0.4
1x [nm] 400 230 230
1k/k 8 · 10−5 6 · 10−5 6 · 10−5

L tot [m] 1461 917 791

final focus is primarily determined by the achievable level of
orbit perturbations internal to the CCY, as measured at the sec-
ond Y-sextupole, and by the effect of synchrotron radiation in
the bending magnets. Assuming an orbit stability of1x ≈ 230
nm, the initial length of the final focus design for an NLC with
1 TeV c.m. energy was reduced by about a factor of two. The
distance from the CCX to the IP is now about 800 m. For a final
focus system at a c.m. energy of 1.5 TeV, the optimum length is
estimated to be about 1000 m.
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