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Abstract By symmetry,c¥ = d* = ¢¥ = 0 for CCX and CCY, and we

An optimization scheme for final focus systems is discussed ahgrume the same for the BX. Thalependence is then extracted
applied to the NLC design. The optical functions at the deffrom the coordinates;; = /X', andx; = ﬁ, y1=/BY,
cusing sextupoles, the sextupole strength, and the length of the vy y
system must obey eight conditions that are imposed by the spbt /5!
size increase due to higher-order aberrations, the effects of s§id length-independent chromatic coefficients are introduced,
chrotron radiation in the bending magnets, power supply ripp®, = d*L, ¢*Y = c¢, ¢V =&Y, ¥ = L& Y. The
magnet vibration tolerances, and the estimated orbit stabilitythmiltonian (3) is then written

the sextupoles. These eight conditions determine the minimum

,Wherex, X, y, y are now normalized IP-coordinates,

y
optimum length of the system. The NLC final focus design was H — _9 I:éX'B_i(X’Z + CX”LXXZ - eyﬂ_ly/Z
shortened to this optimum. 2 L B1 L
» L ~0 1
—& —y? +2sLd* x| . (4)
[. INTRODUCTION Y /BX }

In this report, an optimization scheme for final focus systems ) ) ] )
is proposed. The spot size increase by higher-order aberratidrigally, the dispersion at the y-sextupoles is converted into a
synchrotron radiation effects, and the tolerances on power siffigth-independent parametes via
ply ripple, mechanical vibrations, and orbit stability depend on _
the length of the final focus system. This dependence results in n=0plraz, ()

scaling laws that are discussed in the next section. To evalua}]e

these for the NLC final focus system, the values of certain Ieng%(ﬁ{- eredg is the bend angle of the last bending section at the end

independent parameters have been extracted from a preliminar)g,he CCY, and. the total length of the final focus system.

not optimized final-focus design. Based on these values, the opli-The ccX and the BX
mum choice for dispersion and beta functions atthe Y-sextupoles,
for the sextupole strength and the length of the bend section are
found. We roughly follow the analysis presented in Ref. [1].

We rewrite Eg. (4) for the CCX in the form

_H ~ A EEXLY) A= G(X, _lExy

However, the final optimization procedure is different. e & @2 T CgTa YD (6)
Il. SCALING LAWS where 5 v B ooxn
A. A General Telescope FOCY) = =587 X"+ 587y 7)
We assume that the final focus system contains a horizon-

tal and a vertical chromatic correction section (CCX and CCY) s L 5 L
which are separated by a beta-exchange module (BX). ConsBix, y) = —— éx"—xxz —_¢ ”_yy2 + 252ax’_xx ,
ering only quadrupole magnets of strengththe Hamiltonian 2 Pr 2 F vV BE

for either one of these three modules may be written . ) ] o
5 s and we have introduced the horizontal and vertical chromaticities
H=—2Y ki +mo2+2 Y ky2. (1) &% = &fF, £8% = &, The Hamiltonians of the two X-
2 2 sextupoles at the beginning and the end of the CCX, denoted by
We now transform to the starting point of the module using thieand 2, read
sine- and cosine-like trajectories,= ¢*x; +SX;, yi = ¢'y1 +

gyyi, to define the chromatic coefficients Hi = HXe + nes, Ye) , (8)
oY =3 ke Y =2 ks, Ho = —HXe 478, Ye) + kened(XE — V), (9)
Y= Y kg 2 respectively, wheréi is the usual sextupole-Hamiltonian
d* = inicr, d¥ = kinis®, 2 ~ 1
2 kme 2 kims @ Ak, y) = =ke (¢ — 3¢y (10)
and get 3!
s , ) .
H - -3 [c"xf + XX+ O Xiz + 5%y the termkg denotes the integrated sextupole strengthxane:

5 VBEX', andye = /By are the coordinates at the first X-
+8dx/x/l] + > [cyyf +yyy + ¢ yf] (3) sextupole. Now the total CCX, including sextupoles, is

1 ’ o\ 1 ’ o\ CX CX
*Work supported by Department of Energy contract DE-AC03-76SF00515. e Mg sFXYIg Gy g s FXY)e=H: — g=Cr g Hr , (11)



where Here,L g denotes the length of the last bending section behind the

CCY, andthe factor 2 accounts for the contributions from bending
GE* =G (x + > (12) magnetsinthe center ofthe CCY. The length of the central section
is more than two timek g, but in this case about half the doublet
and chromaticity is compensated by the final sextupole. Combining
HECX = FCCX | kenes (k2 — y2) . (13) Eas. (5), (20) and (21) and usiag= ¢ we find

In much the same manner the chromaticity can be propagated
through the BX to give

: L52x ;
55 5.2 . (23)
(27\/3) leley o

and a termCE* analogous t€5°*. The generator&5°* and The overall chromaticity balance reads approximately
GBX contam fourth- and flfth order terms, which have to be

=
lw)
|
N
-
N}
—
N
wr | >
~<@m
S~——
wl

HBX = FBX 4 FCCX 4 kepes(x2 — y2) (14)

small s by ,3D
77DkD,3 ~ E( )+~ CCY L’ (24)
C. The CCY
The Hamiltonian (14) to be carried through the CCY is afvhereb ~ 2.
the form 5
H ~ -5 Ox? 4 §<3> ., (15) E. Long-Sextupole Effect
where A long sextupole generates octupole-like aberrations [2],
which impose a limit on the tolerable sextupole length. For two
%.)ga; — 5 E 5 — 2kene Bl —konoBlY, (16) sextupoles separated by-d, these aberrations are described by

the Hamiltonian

and it interacts with a term analogous@gx, y) above,

2,4

His = Ix2y2 4 gE2yY . (25)

a1
X% — 82LdSy—=Xx+.... (17)

X
\/% wherelp denotes the sextupole length. From the resulting in-
The largest aberrations generated by the kickxinis a crease of the vertical spot size, we deduce
s3-dispersion that could, at least in principle, be canceled down-
stream, and &3-chromaticity, from which k2 |D

V15

BE > ~ AR 2L, (18)

GCY , — __¢g r=
(X y) ZCCYIBB

(V3B BYex + V15856, < Ay . (26)

Decomposing the integrated sextupole strengttpas | pkp, it
whereA, ~ 1 denotes the maximum tolerable relative increadellows that
of the horizontal spot size. Similarly, thekicks generate a

third-order vertical chromaticity andx?y'?s-term, giving rise ( 6A, >% )
to the two conditions =
K3 (V3B Bhex + V/15p% %ey)
5%y 602 < Ay, 19
V15 ,3 -7 (19) Assuming a pole tip field of 0.5 T at a radius of 5 mm, the

maximum value okp is about
V3SEL KB LBE Bhex < Ay, (20)

ic ~ —3
whereA, ~ 1/4/2 (see Section F). Kp.max ~ 24 n° at 500 GeV beam energy  (28)

D. Synchrotron Radiation and Chromaticity F. TheA-Values

The beam size increase, due to the additional energy spread To determine the optimum relative spot-size increasgs
8rms, induced by synchrotron radiation inside and behind th@ , andAg, we takeA = Ag = A,. Usingﬂ;‘y ~ 1/Axy

CCY and to the uncompensated doublet chromatigfy, ~ (which follows from&®, ~ 1/8:,, B5Y ~ 1/8%,, and Eqs
3 e Y e '
26>, has to be small: (18), (19), and (20)), we find

25 £® - A 21 1 1
rmSEy E ( ) —(1+ 2A2) and O'2 X A_(l + Ai) s (29)
X

X

whereAg ~ 1 denotes the maximum tolerable relative increase
of the vertical spot size d_ue to synchrotron radiation (see IateTrrljm which the smallest spot size is obtained for
and the energy spredghs is [3]

and Ax~1. (30)
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55 1 503 ~ A A
5r2ms ~ 4\/—2 e)\e)/ L2 . (22) Ay SRAV



G. Vibration Tolerance and Power Supply Ripple

Denoting the horizontal vibration amplitude of the Y-Initial and optimized CCY parameters for an NLC final focus system at 1 TeV

sextupoles (this is equivalent to an orbit-change due to a vibrating
quadrupole between the sextupole-pair)ty, we find

1
5AX
allowing a maximum spot size increase of 2% due to the induced
waist shift. Moreover, if we suppose that the strength of all

guadrupoles in the CCY varies by a facttok/k due to power
supply ripple, it follows

ksBY < (31)

Yo — 32
ﬂD—SATkééY ( )

Table |
c.m. energy.
Parameter 1TeV
Initial [ Optimum | Present
B2 [km] 160 140 120
np [mm] 45 24 23
kp [m~2] 2.8 6.4 7.4
Ip [m] 0.4 0.4 0.4
Ax [nm] 400 230 230
Ak/k 8.10° | 6-10° | 6-10°
[ Lot[m] [ 1461 | 917 | 791 |

final focus is primarily determined by the achievable level of

This has to be compared with inequality (19).

orbit perturbations internal to the CCY, as measured at the sec-

ond Y-sextupole, and by the effect of synchrotron radiation in

[ll. OPTIMIZATION

the bending magnets. Assuming an orbit stability\of ~ 230

The minimum length of a final focus can be derived from tHa™: the initial length of the final focus design for an NLC with

The achievable orbit stability at the second Y-sextupole regardi

eight conditions (18), (19), (20), (23), (24), (26), (31) and (32%
perturbations internal to the CCXx, determines the maximum

TeV c.m. energy was reduced by about a factor of two. The
@tance from the CCX to the IP is now about 800 m. For a final
ocus system at a c.m. energy of 1.5 TeV, the optimum length is

value ofkp g, via Eq. (31), while Eq. (18) gives a minimumestimated to be about 1000 m.

value of 8§ /L. If these two limits are inserted into Eq. (20), a
lower bound ong /L2 is obtained. Inequality (23) shows that
the smallest value foip allows the shortest length. Ideally, [1]
therefore, we would like to choose the smallest valuesforL

on the right-hand side of (24). However, a compromise has to
be made in order to keep the sextupole strekgtht a tolerable [2]
level. The semi-arbitrary requirement that the second term on
the right-hand side contribute about 15% to the total may be a
reasonable choice. Inserting the optimum value of the dispers|h
np, deduced from Eq. (24), into Eqg. (23), the minimum lenigth
follows. It still remains to be verified whether the usually loos€#]
conditions (19), (26) and (32) are fulfilled.

As an example, from the initial design of an NLC final focu§5]
at 1 TeV, we extract;, ~ 0.062,b ~ 1.6, €, ~ —24,(“%”Y ~
—0.67, €%y ~ 0.12,£3 ~ —2000 (forg; ~ 25 mm),£3 ~
15 800, andx ~ 34. The rms-energy spread is taken to be
8 ~ 2 x 1073, the horizontal normalized emittanegy ~ 5 mm
mrad, and the emittance rakg/e, ~ 100.

Assuming that at the second sextupole an orbit stability of
AX ~ 230 nm can be achieved, the optimum final-focus param-
eters are obtained by the outlined procedure. They are listed in
Table | and compared with the initial and the present final focus
design. The length of the final focus was shortened by about a
factor of two. This was achieved by lowering the value of dis-
persion and beta functions at the Y-sextupoles, while increasing
the sextupole strengtty. The present design is even somewhat
shorter than the estimated optimum. The reason for this is that
new sextupoles, similar in spirit to those proposed by Brinkmann
[4], have been added throughout the system, which locally cor-
rect the chromaticity in each module. For more details on the
NLC final focus, see Ref. [5].

IV. SUMMARY

We have derived eight scaling laws that characterize the
length-dependent effects in a final focus system, and can be used
as a guideline for optimization. The optimum length of the NLC
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