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Abstract

The sensitivity of three previously proposed side coupled stand-
ing wave muffin-tin structures are estimated using a finite dif-
ference program. The muffin tins consist of rectangular cavi-
ties only. Such geometries can be discretized by a program like
MAFIA without errors. But as soon as small errors in the cavity
dimensions are present, MAFIA is not able to discretize them
with sufficient accuracy. Therefore a finite difference program
adjusted to the problem has been written that discretizes the cav-
ity volume exactly for all cavities where the position of two of
the six cavitywalls is perturbed. This program was used to cal-
culate the shunt impedance of a big number of structures with
random errors in the cavity dimensions.

I. INTRODUCTION

A class of linear accelerators has been previously proposed,
which should operate at 120 GHz and could be manufactured
cheaply by silicon etching or LIGA due to their rectangular ge-
ometries [2],[3]. The typical structure dimensions are 1 mm.
Because the structures are so tiny, it seems almost impossible
to tune them after manufacturing. Therefore it is necessary to
evaluate the effects of errors in the geometry.

In a previously published paper [4], the error sensitivity of
the geometries was already estimated using a lumped circuit ap-
proach. As will be seen from the present paper, the lumped
circuit approach was valid. The present paper deals with calcu-
lating directly the fields in the perturbed structures and reports
the averages of the calculated shunt impedances.

II. THE PROBLEM OF CALCULATING THE
FIELDS IN A PERTURBED STRUCTURE

The standard linac structure operates in2�=3-mode. The left
part of Fig. 1 shows the accelerating field in a quarter of a2�=3
muffin tin. Perturbing the position of the lower wall of the 2.nd
and 3.rd cavity by a fractional amount of +/- 1 percent respec-
tively changes the field pattern to that of the right of Fig. 1.
Calculating the field in this geometry with MAFIA [1] is possi-
ble, but the closeness of three meshlines at the lower boundary
gives rise to numerical problems.

As will be seen later, a perturbation of 1% is not tolerable.
As the perturbations become smaller, the distance of the mesh-
lines decreases also and the structures become untractable with
MAFIA.

III. HOW TO SOLVE THE PROBLEM

In this special problem, where only the lower planesy = yn
of the cavities are perturbed, calculation of the fields is possi-
ble with finite differences. The trick is, not to extend the mesh
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Figure 1. Left: Accelerating field in the ideal structure, Right:
Field in the perturbed structure

planesy = yn over the whole volume, but to define local mesh-
planes in the parts of the volume that are only partly coupled.

In figure 2 two cells of a perturbed muffin tin are shown. It
can be seen, that local within every cavity the grid can be made
as in a single cavity, since the fields inside the tins are decoupled
from each other.

This idea has been implemented as a computer code called
GdfidL [5]. It handles the non regular grid as a 6 times linked
list, where every cell has indices to its six neighbours. With this
grid definition, it is not necessary to discretize inside the metallic
parts of a structure. This has the effect, that for the structures
considered here, the number of unknowns to be handled shrinks
to about 60% of the number necessary for a regular grid.

The figure 3 show the positions of grid planesz = zn and
y = yn in the cases of a regular and a non regular grid. For
clarity, these grids discretize cavities with errors of 5 percent,
because smaller errors are almost invisible.
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Figure 2. 2�=3mode in a perturbed muffin tin. The y-extension
of the second cavity is perturbed by 5%.

Figure 3. Left: Regular grid, Right: irregular grid, represented
as a linked list

IV. ESTIMATION OF THE SENSITIVITIES

To estimate the sensitivity of the muffin tins, the shunt
impedancer=Q was calculated for a number of structures with
random errors in the cavities. The average of theser=Q' s is a
measure of the sensitivity.

GdfidL can discretize arbitrarily small perturbations of the
positions of the lower or higher walls of the cavities, but can-
not discretize small perturbations in the x-extension of the cav-
ities. Therefore only the positions of the lower cavity walls are
perturbed.

GdfidL calculates fast and in small memory, but cannot cal-
culate a side coupled muffin tin in full length on the computer
I used. Therefore only 20 mm long sections of the muffin tins
were calculated. These sections contain 24 cavities in the case
of the single periodic2�=3 structure and 48 cavities in the case
of the side coupled structures.

The figures 4 and 5 present the averages and standard devia-
tions of the shunt impedances, scaled with shunt impedances of
the ideal structures. The ordinates are the standard deviations
of the relative errors in the y-extension of the cavities. Every
marker in the curves is the average of 20 shunt impedances of
structures with the same standard deviation of errors. The wall
of every single cavity was randomly perturbed, but the perturba-
tions were limited to 2 times the standard deviation.

The exact geometries that are analyzed here are described in
[2] and [3].

V. CONCLUSION
It seems that in any case 0.5% errors in the positions of the

lower wall are tolerable for 90% of the optimum. The lumped
circuit approach [4] predicted 0.2% frequency errors would be
ok for the2�=3 structure, 0.1% for geometry 2 and geometry 3.

The lumped circuit dealed with frequency errors, this pa-
per deals with geometric errors. But since all the muffin tins
have approximately the same extension in y- as in x-direction,
the frequency of a single cell depends in the same way on the
y-extension as on the x-extension. The frequency of a sin-
gle cell of a muffin tin is approximately given by
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extension only, as it was analyzed here, has the effect of a rela-
tive frequency error of�f=f0 � �
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This means: when the lumped circuit allows a frequency error
of 0.2%, this is equivalent to a geometric error in the y-extension
of 2� 0:2%. The lumped circuit approach was valid.
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Figure 4. Mean (< r0 >) of the shunt impedances as a function
of the standard deviation of the errors (�b

b0
).
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Figure 5. Standard deviation (�(r0)) of the shunt impedances
as a function of the standard deviation of the errors (�b

b0
).


