
Abstract

The magnet lattice appropriate for a tau-charm factory had
been studied extensively [1].  Here we discuss two possible
simplifying features which make the design, construction, and
operation of the machine simpler without sacrificing perfor-
mance.  These two features may be characterized and identified
as a) luminosity optimization in the “monochromatic” mode,
and b) chromaticity correction with sextupoles only in the arcs.

I.  INTRODUCTION

A tau-charm factory is a high luminosity (L≥1033cm-2 s-1)

e+e- collider with a center-of-mass energy, 2E (E = beam
energy), adjustable from 3 to 6 GeV.  The lower limit is set by
the charmonium, J/ψ, production threshold of 3.1 GeV and the
upper limit is set by the production threshold for pairs of

charmed baryons, e.g. at 2×2.74 GeV for ( ).  The high

luminosity requires that the two beams be stored in separate
rings, here assumed to be located one directly above the other.
Because of the extremely narrow width of J/ψ (Γ =
0.086 MeV), it has been proposed [1] that for J/ψ production
the lattices of the two rings be tuned to have large equal and
opposite vertical dispersion functions,±Dy, for the two beams
at the collision point.  The collision energy spread would then
arise only from the vertical betatron widthσyβ of the beams.
To keep the energy spread within the J/ψ width, we must have

. (1)

This so-called “monochromatic” tuning was considered
necessary for J/ψ production even at a sacrifice of luminosity.
We will show that, properly optimized, the achievable lumi-
nosity is actually higher for the “monochromatic” tune.

II.  OPTIMIZATION OF LUMINOSITY

For the head-on collision of two identical beam bunches
containing N particles each, the beam-beam tune shifts are
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where K ≡ ro/2πγ = 1.48×10-19 m at the beam energy of E =
1.55 GeV for J/ψ production.  In these equations and through-
out this paper all symbols have their conventional meanings
and all quantities are evaluated at the collision point.  The
luminosity is

, (3)

where f is the bunch collision frequency.  The luminosity is
clearly largest whenξx = ξy ≡ ξ = empirical maximum attain-
able value≅ 0.04.  This condition gives

. (4)

When this condition is satisfied, we have

(5)

and
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For the standard tuning Dx = Dy = 0 and Eq. (4) gives
βy/βx = εy/εx = a value generally much less than unity.  In this
case, we should takeβy = 0.01 m = the smallest practicable
value in one of the two dimensions.  Taking further, f =

30 MHz (10-m bunch spacing) andεx = 250×10-9 m-rad we
obtain

This shows that with these parameters one can barely reach the

desired luminosity of 1033cm-2s-1.
For the “monochromatic” tuning, the example lattice we

studied gives Dy = 0.4 m andσE ≅ 0.6 MeV at the beam energy
E = 1.55 GeV for J/ψ.  Equations (1) and (4) then give

(7)

and
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It is unlikely thatεy can be made smaller thanεx/190.  Equa-
tion (8) then says thatβx must be smaller thanβy.  We therefore
setβx equal to the minimum practical value of 0.01 m.  Equa-
tions (7) and (8) then give

, (9)

and Eqs. (5) and (6) give

. (10)

The higher luminosity is derived, of course, from the higher
beam intensity which is, however, allowed by the beam-beam
effect for this design.

The very small collision energy spread is desirable at all
energies and for all experiments.  There is no need ever for the
zero-dispersion design.

III.  A RC LATTICE

The linear lattice is conventional and consists of two 180°
arc sections joined by two 118.4-m-long straight sections:  one
for injection and rf, the other for beam collision and the detec-
tor assembly.  The arc sections are composed of ten 60° 7.4-m
FODO cells each (including the horizontal dispersion suppres-
sor cells) with parameters adjusted to give a natural horizontal

emittance of ~250�×10-9 m.

IV.  COLLIDING STRAIGHT LATTICE

The injection straight lattice is conventional and straight-
forward and will, therefore, not be discussed.  The collision or
interaction straight lattice is developed along the following
guiding features:

1. The collision is head-on.  The strong low-β quadrupole
doublets next to the collision point are superconducting,
and are common to and have identical focal actions on
both beams.  The lattice is, thus, symmetric.  Outboard of
the common quadrupole doublets, the beams are separated
vertically, first by electrostatic separators followed by sep-
tum dipoles.  The linear orbit functions are adjusted to

Dx = 0, Dy = ±0.4 m , βx = 0.01 m,βy = 0.03 m,εy

4×10-9 m and, since the lattice is symmetric, D′x = D′y =
αx = αy = 0.  (Here, as before, all values given are those at
the collision point.)

2. We choose not to cross the beams so that a) the central col-
lision energy can be fine-adjusted (up to ~2σE ≅ 1.2 MeV)
by vertically parallel-displacing one beam against the
other, and that b) the no crossing geometry in the injection
straight is more convenient for injection and for accom-
modating rf cavities.  The design of the matched linear lat-
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tice offers essentially no special difficulties and is shown
in Fig. 1.  However, some special attention is required for
chromaticity correction and dynamic aperture problems.

V.  CHROMATICITY CORRECTION ANDDYNAMIC

APERTURES

Without correction the natural chromaticities of the linear
lattice are approximately -27 (horizontal) and -39 (vertical).
The major contribution comes from the very strong supercon-
ducting low-β quadrupoles.  The traditional wisdom is to cor-
rect the chromaticity “at the source.”  To do this, many
additional complicated and difficult matching conditions must
be met in the linear straight lattice

For this tau-charm factory we tried to avoid this complica-
tion by locating the sextupoles in the arcs only.  Since the arcs
consist of 60° FODO cells, we can place two pairs of sextu-
poles in each arc such that the two members in each pair are
identical in strength, located at identicalβ values, and sepa-
rated byπ phase-advance.  In this way, the chromaticity cor-
recting effects of the two members add, but their resonance
driving effects cancel.  With one pair placed at highβx and the
other at highβy, we can adjust the strengths of the two pairs to
correct the x- and y-chromaticities simultaneously.  We found,
indeed, that after correcting the chromaticities to zero, the
dynamic apertures are > 80σ (σ = larger ofσx andσy) at the
central energy and > 25σ at±10σE from the central energy.

Actually, with the rather large vertical dispersions at the
superconducting low-β quadrupoles, one can provide chroma-
ticity corrections “at the source” by inserting superconducting
skew-sextupole coils in these low-β quadrupoles, except it is
now impossible to cancel their resonance-driving harmonics
by other skew-sextupoles locatedπ-phase advance away.
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Figure 1: Linear orbit functions across one-half of the interaction straight section.
At the collision point βx = 1 cm,βy = 3 cm, Dx = 0, Dy = 0.4 m.

For the complete ring,εx = 252 nm,εy = 3.8 nm, andσE/E = 0.38×10-3.
The vertical separation of the rings is ~1.23 m.


