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Abstract

In a storage ring the existence of skew quadrupoles, solenoids,
and other coupling € ements breakstheindependence of the hor-
izontal and vertical motions. With the flat beams used in elec-
tron/positron colliding beam storage rings this coupling results
inanincresse in the vertical beam size with an attendant lossin
luminosity. By defining a‘ badness' parameter B. the luminos-
ity loss can be directly related to measurements of the coupling.

I ntroduction

The coupling of horizontal and vertical motions in colliding
beam storage rings results in an unwanted increase in vertica
beam size and hencein aloss of luminosity. It isuseful in deal-
ing with coupling to be able to relate how severe the luminosity
degradation is for a given amount of coupling. To thisend it is
useful to definea‘badness parameter B, :

L(BBI) — £(BBI+Coup)

Bc = ’
£(BBI)

D

where £(BBI+Coup) istheluminosity obtained with coupling
present, and £(BBI) is the luminosity without coupling and
only thebeam-beam interaction to determine the beam size (and
hence the luminosity). With thisdefinition for B, the condition
needed so that the coupling is negligibleis ssimply

Be< 1. )

Theusefulness of B. comeswhen we can relateit directly to the
coupling. Thisisthe problem to be addressed in the rest of the

paper.
Assuming equal beam sizeswith oy > ox onefindg[1]
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L= (1+<UX' )) , ©)
drox oy oy

where N isthenumber of particlesin each beam, ox and oy are
the beam sigmas along the principal axes, and 266 = (6, —0_)
is the angle between the beams due to the coupling. This dif-
ferential rotationisnot present if the opposing beams follow the
same trgjectory since, in this case, there is time reversal sym-
metry. However, with a pretzeled orbit, or with atwo ring ma
chine, the coupling each beam seesisdifferent and the symmetry
islost. Using Eq. (3) in Eq. (1) and using thefact that, for weak

coupling, ox isindependent of the coupling gives

B~ oy (BBI+Coup) — oy (BBI)
¢ oy (BBI4-Coup)

+ (4)
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Figure1: 1o beam envelopes
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where ‘x’ indicates the quantity must be evaluated at the IP.
There are two componentsto B..: Thefirst term on the RHS of
Eq. (4) isdueto the vertical blow-up of the beams and the sec-

ond term is due to the decrease in overlap when the beams are
rotated with respect to one another.

Vertical Beam Blowup

Consider first the vertical blow-up term in Eq. (4). The prob-
lem with this term is that it is not an easy matter to compute
oy (BBI+Coup) — oy (BBI). The reason for this is that the
beam blowup dueto coupling is essentialy alinear phenomena
whilethe beam—beam induced blowupishighly nonlinear in na
ture. It isanontrivial matter to determine how the beam-beam
interaction couples with the coupling to affect the beam height.
One optionisto simply assume that the beam—beam interaction
and the coupling can be taken as independent processes so that
the the beam height scales in quadrature:

o2 (BBI+Coup) = o (BBI) + ¢ (Coup) , (5)

where oy (Coup) is the vertica beam height with coupling
but without the beam-beam interaction. The problem is now
simpler since oy (BBI+Coup) can be approximated using
the design or observed beam-beam tune shift parameter and
oy (Coup) can be obtained from coupling data. In order to test



Eq. (5) computer simulations were performed using the weak—
strong model devel oped by Krishnagopal and Siemann[2] mod-
ified to include coupling. The results of the simulations show
more of alinear rather than a quadratic dependence. Thisisrea
sonable since the coupling changes the strength of some of the
resonances driven by the beam—beam interaction. A more con-
servative formulawould then be to take

oy (BBI4+Coup) = oy (BBI) + oy (Coup) . (6)
In the spirit that B, isto be used as afirst check on whether the

coupling is significantly degrading the luminosity, Eg. (6) will
be used. Putting Eq. (6) in Eq. (4) gives

* * 2
( : o% -0 ) o
oy (BBI+Coup)

The computation of oy (Coup) isreatively straightforward.
The normal mode coordinatetransformationfor the4x4 coupled
one-turn transfer matrix T iswritten ag[3, 5]

oy (Coup) 1
oy (BBI+Coup) 2

e ~

T=VvV.UV!
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where I is the identity matrix, ‘{' denotes the symplectic con-
jugate, and v isgiven by v + ||C|| = 1. Eigenmode « isthe
nearly horizontal mode and b isthe nearly vertical mode. To re-
move the beta dependence a can be transformed toa via

a=Ga, (9
where
G, 0 7m0
— a — Ba
(;_'< 0 Gb)’(}a"( Vi VQE) - W

and similarly for G, where 3, isthe betafor eigenmodea. T is
now written in terms of the normalized norma modes as

T=G VUV 'G, (11)
where

V=GVG!

_ Iy G, CG;"!

T\ -G, CtG;! Iy
Iv C

=| =t (12)
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Sincethe couplingisweak thefollowing approximationscan be
made:

BGIBX,GIBZ" 662@’,626@/’

where G, and 3, are the horizontal and vertical betas without
coupling, and Gx . and Gy, are the betas for the ¢ and & modes
projected ontothe X and Y axes respectively with X and Y ly-
ing along the principal axes of abeam (cf. figure 2).

(13)

€q = ECL‘,
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Figure 2: 1o envelope for eigenmode a. Adapted from Bagley
and Rubin figure 1.

Without the beam—beam i nteraction the normal mode motions
are independent so the total sigma is the quadrature sum of the
mode sigmas:

oy (Coup) = €q fy,a + €b o

= 0-§2’,a + 0-32’,6 ’ (14)

where ¢, and ¢, are the emittances for the norma modes

Consider first thea eigenmode. Sincee,, > ¢, themotiondue
to the« modedominates so, to agood approximation, o, = ox 4
and the Y—axis coincides with the minor axis of the « mode.
From figure 2, which is adapted from Bagley and Rubin[3] fig-
urel, we have

Oy .a =V 6aﬁb |612| ) (15)
For the b motion oy , is calculated from Eq. (14):
oy = Ve B - (16)

Combining Egs. (14), (15), and (16), and using Eq. (13) gives at

thelP "
—% €
oy (Coup) = /€ B (C’lz + é) .
With knowledge of the C matrix around the ring one can cal cu-
late e, /€[4, 6] and hence oy (Coup).

How doesthecontributionto oy fromey: , and oy , compare?
Both oy , and oy, scale linearly with C in the sense that if C
around thering is scaled by some factor then both oy , and oy 5
will be scaled by the that factor[1]. However, it isimportant to
notethat o , isdependent upon the coupling matrix around the
ring as oppésed to oy, which is determined solely by the cou-
pling matrix at the IP. Thus, it is always possible to make the a
mode contribution to o> equal to zero by using a single skew
quad but the & mode contribution will always be present unless
theringistotaly (‘localy’) decoupled.

Ignoring the tilt term for the moment, the calculation of B,
from Egs. (7) and (17) and from knowledge of the coupling is

(17)



straight forward if somewhat cumbersome. If one only wants a
rough number, one can first assumethat the sy , contributionhas
been zeroed out using a skew quad. It can be shown that[1]
€p —=2

— 2 <C’ 12>s ,

€a

(18)

where (- - ), isan average over thering. Using thisin Egs. (7)
and (17) then givesfor the vertical blowup term

2¢,

— /
Be~ | — BBy (),

(19)

Using Eq. (19) along with data on C'1»[3, 7] for the Cornell
Electron/positron Storage Ring CESR shows that with a mod-
est amount of global coupling B. can be ashigh as 0.3 and with
local decoupling can be decreased to as low as 0.07[1]. Thisis
in line with the qualitative observation that local decouplingis
necessary to obtain the highest luminosity[7].

48 Calculation

For agiven beam since ¢, > ¢; the a eéigenmotion dominates.
Therefore, with negligibleerror we can taketheangle of abeam,
@ to correspond to 6, — the angle for the « mode elipse. 4, is
related to C'»» as shown in figure 2. Using this gives

30 55(9+—9_):,/é(5022, (20)
where )
(5622 = 5(62274_ — 6227_) . (21)

Sincedd* dependsuponthedifferencein theﬁzz, withpretzeled
orbits§6* may be zeroed using a single skew sextupole.

The critical §6* is defined as the angle needed to give a bad-
ness of 0.1. From Eq. (7) thisisfound to be

567, = 0.46 5 BB+ Coup). 22)

Tx

Combining Eq. (22) with Eq. (20) gives

50, . = 046, [Jz o (BBI+Coup)
22 crit 6; 0_)*(
BBI

_ (.46, | BBI+Coup) - 23)
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Eq. (23) showsthat 65;2767«# isindependent of 37 or 3. This
isjust areflection of the fact that the C”s are properly normal-
ized. Thisisanimportant point: From measurement of thedC's
‘wave’ outside of the P one can get a sense of whether §C., is
too large. Unfortunately, C'»» is hard to measure accurately[3].
However, (', is relatively easy to measure and since the C
matrix can be represented as the superposition of two rotating
phasorg] 5] the magnitudeof thedC'; » wave should bevery close

to the magnitude of the §C»; wave. Furthermore, for a given
§C» a any pointinthering, itiseasily shown that the percent-
age changein the overlap integral due to afinite 6 isindepen-
dent of thelocal 5, and 3,. The conclusionisthat aquick visual
inspection of synchrotronlight signalsfromthebendsinthearcs
will give an indication of how the beams are overlapping at the
IP. One must always remember, however, that it is possible for
the phases to be such that there isno tilt a one point in the arcs
but unacceptabletilt at the IP (or vice versa).

Acknowledgements

My thanks to Dave Rubin and Alexander Temnykh for some
very helpful discussions. My thanksto Flora Sagan for editorial
assistance.

References

[1] D. Sagan, “TheEffect of Couplingon Luminosity,” Cornell
LNS report CBN 95-01 (1995).

[2] S. Krishnagopal and R. Siemann, “Bunch-ength effectsin
thebeam—beam interaction,” Phys. Rev. D, 41, 2312 (1990).

[3] P.Bagley andD. Rubin,“Correction of Transverse Coupling
ina Storage Ring,” Proc. 1989 Part. Acc. Conf. (San Fran-
cisco) p. 874, (1989).

[4] Y. Orlov and D. Sagan, “Calculation of the Crab Rotation
Angle from the One Turn Transport Matrix,” Cornell CBN
91-04, (1991).

[5] M. Billing, “The Theory of Weakly, Coupled Transverse
Motion in Storage Rings,” Cornell CBN 85-2, (1985).

[6] M.Billing," ‘Vertica’ Emittancedueto Linear L attice Cou-
pling,” Cornell CON 866, (1985).

[7] D. Rubin, private communication.



