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Abstract

In a storage ring the existence of skew quadrupoles, solenoids,
and other coupling elements breaks the independence of the hor-
izontal and vertical motions. With the flat beams used in elec-
tron/positron colliding beam storage rings this coupling results
in an increase in the vertical beam size with an attendant loss in
luminosity. By defining a ‘badness’ parameter Bc the luminos-
ity loss can be directly related to measurements of the coupling.

Introduction

The coupling of horizontal and vertical motions in colliding
beam storage rings results in an unwanted increase in vertical
beam size and hence in a loss of luminosity. It is useful in deal-
ing with coupling to be able to relate how severe the luminosity
degradation is for a given amount of coupling. To this end it is
useful to define a ‘badness’ parameter Bc:

Bc � L(BBI) �L(BBI+Coup)
L(BBI) ; (1)

where L(BBI+Coup) is the luminosity obtained with coupling
present, and L(BBI) is the luminosity without coupling and
only the beam–beam interaction to determine the beam size (and
hence the luminosity). With this definition for Bc the condition
needed so that the coupling is negligible is simply

Bc � 1 : (2)

The usefulness ofBc comes when we can relate it directly to the
coupling. This is the problem to be addressed in the rest of the
paper.

Assuming equal beam sizes with �Y � �X one finds[1]

L =
f N2

4��X�Y

 
1 +

�
�X � ��
�Y

�2!�1=2

; (3)

where N is the number of particles in each beam, �X and �Y are
the beam sigmas along the principal axes, and 2�� � (�+� ��)
is the angle between the beams due to the coupling. This dif-
ferential rotation is not present if the opposing beams follow the
same trajectory since, in this case, there is time reversal sym-
metry. However, with a pretzeled orbit, or with a two ring ma-
chine, the couplingeach beam sees is different and the symmetry
is lost. Using Eq. (3) in Eq. (1) and using the fact that, for weak
coupling, �X is independent of the coupling gives

Bc � ��Y (BBI+Coup)� ��Y (BBI)

��Y (BBI+Coup)
+ (4)
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Figure 1: 1� beam envelopes
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where ‘�’ indicates the quantity must be evaluated at the IP.
There are two components to Bc: The first term on the RHS of
Eq. (4) is due to the vertical blow-up of the beams and the sec-
ond term is due to the decrease in overlap when the beams are
rotated with respect to one another.

Vertical Beam Blowup

Consider first the vertical blow-up term in Eq. (4). The prob-
lem with this term is that it is not an easy matter to compute
�Y (BBI+Coup) � �Y (BBI). The reason for this is that the
beam blowup due to coupling is essentially a linear phenomena
while the beam–beam induced blowup is highly nonlinear in na-
ture. It is a nontrivial matter to determine how the beam–beam
interaction couples with the coupling to affect the beam height.
One option is to simply assume that the beam–beam interaction
and the coupling can be taken as independent processes so that
the the beam height scales in quadrature:

�2Y (BBI+Coup) = �2Y (BBI) + �2Y (Coup) ; (5)

where �Y (Coup) is the vertical beam height with coupling
but without the beam–beam interaction. The problem is now
simpler since �Y (BBI+Coup) can be approximated using
the design or observed beam-beam tune shift parameter and
�Y (Coup) can be obtained from coupling data. In order to test



Eq. (5) computer simulations were performed using the weak–
strong model developed by Krishnagopal and Siemann[2] mod-
ified to include coupling. The results of the simulations show
more of a linear rather than a quadratic dependence. This is rea-
sonable since the coupling changes the strength of some of the
resonances driven by the beam–beam interaction. A more con-
servative formula would then be to take

�Y (BBI+Coup) = �Y (BBI) + �Y (Coup) : (6)

In the spirit that Bc is to be used as a first check on whether the
coupling is significantly degrading the luminosity, Eq. (6) will
be used. Putting Eq. (6) in Eq. (4) gives

Bc � ��Y (Coup)

��Y (BBI+Coup)
+

1

2

�
��X � ���
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�2
: (7)

The computation of �Y (Coup) is relatively straightforward.
The normal mode coordinate transformation for the 4x4 coupled
one–turn transfer matrixT is written as[3, 5]

T = V�U�V�1
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; (8)

where I is the identity matrix, ‘y’ denotes the symplectic con-
jugate, and  is given by 2 + jjCjj = 1. Eigenmode a is the
nearly horizontal mode and b is the nearly vertical mode. To re-
move the beta dependence a can be transformed to a via

a = Ga ; (9)

where
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; (10)

and similarly forGb where �a is the beta for eigenmode a. T is
now written in terms of the normalized normal modes as

T = G�1
V U V

�1
G ; (11)
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Since the coupling is weak the following approximations can be
made:

�a = �X;a = �x; �b = �Y;b = �y ; �a = �x; (13)

where �x and �y are the horizontal and vertical betas without
coupling, and �X;a and �Y;b are the betas for the a and b modes
projected onto the X and Y axes respectively withX and Y ly-
ing along the principal axes of a beam (cf. figure 2).
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Figure 2: 1� envelope for eigenmode a. Adapted from Bagley
and Rubin figure 1.

Without the beam–beam interaction the normal mode motions
are independent so the total sigma is the quadrature sum of the
mode sigmas:

�2Y (Coup) = �a �Y;a + �b �Y;b

� �2Y;a + �2Y;b ; (14)

where �a and �b are the emittances for the normal modes
Consider first thea eigenmode. Since �a � �b the motion due

to theamode dominates so, to a good approximation,�x = �X;a

and the Y –axis coincides with the minor axis of the a mode.
From figure 2, which is adapted from Bagley and Rubin[3] fig-
ure 1, we have

�Y;a =
p
�a�b jC12j ; (15)

For the b motion �Y;b is calculated from Eq. (14):

�Y;b =
p
�b�b : (16)

Combining Eqs. (14), (15), and (16), and using Eq. (13) gives at
the IP

��Y (Coup) =
q
�a��y

�
C
�2

12 +
�b

�a

�1=2
: (17)

With knowledge of theC matrix around the ring one can calcu-
late �a=�b[4, 6] and hence ��Y (Coup).

How does the contribution to��Y from ��Y;a and ��Y;b compare?
Both �Y;a and �Y;b scale linearly with C in the sense that if C
around the ring is scaled by some factor then both �Y;a and �Y;b
will be scaled by the that factor[1]. However, it is important to
note that ��Y;b is dependent upon the coupling matrix around the
ring as opposed to ��Y;a which is determined solely by the cou-
pling matrix at the IP. Thus, it is always possible to make the a
mode contribution to ��Y equal to zero by using a single skew
quad but the b mode contribution will always be present unless
the ring is totally (‘locally’) decoupled.

Ignoring the tilt term for the moment, the calculation of Bc

from Eqs. (7) and (17) and from knowledge of the coupling is



straight forward if somewhat cumbersome. If one only wants a
rough number, one can first assume that the�Y;a contributionhas
been zeroed out using a skew quad. It can be shown that[1]
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s
; (18)

where h� � �is is an average over the ring. Using this in Eqs. (7)
and (17) then gives for the vertical blowup term
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: (19)

Using Eq. (19) along with data on C12[3, 7] for the Cornell
Electron/positron Storage Ring CESR shows that with a mod-
est amount of global couplingBc can be as high as 0.3 and with
local decoupling can be decreased to as low as 0:07[1]. This is
in line with the qualitative observation that local decoupling is
necessary to obtain the highest luminosity[7].

�� Calculation

For a given beam since �a � �b the a eigenmotion dominates.
Therefore, with negligible error we can take the angle of a beam,
� to correspond to �a — the angle for the a mode ellipse. �a is
related to C22 as shown in figure 2. Using this gives
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�

22 ; (20)

where

�C22 � 1

2
(C22;+ � C22;�) : (21)

Since ��� depends upon the difference in theC
�

22, with pretzeled
orbits ��� may be zeroed using a single skew sextupole.

The critical ��� is defined as the angle needed to give a bad-
ness of 0.1. From Eq. (7) this is found to be

���crit = 0:46
��Y (BBI+Coup)

��X
: (22)

Combining Eq. (22) with Eq. (20) gives

�C
�

22;crit = 0:46

s
��x
��y

��Y (BBI+Coup)

��X

= 0:46

s
�y(BBI+Coup)

�x
: (23)

Eq. (23) shows that �C
�

22;crit is independent of ��x or ��y . This
is just a reflection of the fact that the C’s are properly normal-
ized. This is an important point: From measurement of the �C22

‘wave’ outside of the IP one can get a sense of whether �C
�

22 is
too large. Unfortunately, C22 is hard to measure accurately[3].
However, C12 is relatively easy to measure and since the C
matrix can be represented as the superposition of two rotating
phasors[5] the magnitude of the �C12 wave should be very close

to the magnitude of the �C22 wave. Furthermore, for a given
�C22 at any point in the ring, it is easily shown that the percent-
age change in the overlap integral due to a finite �� is indepen-
dent of the local �x and �y . The conclusion is that a quick visual
inspection of synchrotron light signals from the bends in the arcs
will give an indication of how the beams are overlapping at the
IP. One must always remember, however, that it is possible for
the phases to be such that there is no tilt at one point in the arcs
but unacceptable tilt at the IP (or vice versa).
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