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Abstract

The longitudinal and transverse coupling impedances of a small
discontinuity on the accelerator chamber wall can be expressed in
terms of the electric and magnetic polarizabilities of the discon-
tinuity. The polarizabilities are geometrical factors and can be
found by solving a static (electric or magnetic) problem. How-
ever, they are known in the explicit analytical form only for a few
simple-shaped discontinuities, for example, for an elliptic hole
in a thin wall. In the present paper the polarizabilities of a ring-
shaped cut in the wall are obtained. The results are applied to
calculate the coupling impedances of button-type beam position
monitors.

I. Introduction

The coupling impedances of a small discontinuity on the wall
of the vacuum chamber of an accelerator have been calculated in
terms of the polarizabilities of the discontinuity [1], [2], [3]. The
basic idea of the approach used is related with the Bethe theory of
diffraction by small holes [4], which shows that fields produced
by a hole can be approximated by those due to effective dipoles
induced on the hole by an incident (beam) field. The magnitudes
of the effective electricP and magneticM dipoles are expressed
through the incident fieldsEh

ν , Hh
τ at the hole location without

hole [4], [5]

Pν = −χε0Eh
ν /2; Mτ = ψ Hh

τ /2 , (1)

whereχ is the electric polarizability andψ is the magnetic sus-
ceptibility of the hole, ˆν is the normal vector to the hole plane, and
τ̂ is the tangential one. In general,ψ is a symmetric 2D-tensor,
but we will consider here only axisymmetric holes.

The hole polarizabilities are known in an analytical form only
for a few simple cases. For a circular hole of radiusb in a thin
wall ψ = 8b3/3 andχ = 4b3/3 [4]. There are also analytical
results for elliptic holes in a thin wall [5]. The polarizabilities
for the case of a thick wall have been studied using a variational
technique in [6] for circular holes, and in [7] for elliptic holes.
There are also some approximate formulae for slots [8].

In the present paper, the polarizabilities of an annular cut in
a thin wall are obtained and used to estimate the beam coupling
impedances of the button-type beam position monitors (BPMs).

II. General Analysis

When the wavelength is large compared to the hole size, the
polarizabilities can be obtained from the electro- or magnetostatic
problem: find the fields due to an aperture (hole) in a metal plane
when it is illuminated from one side by a homogeneous static
(normal electric or tangential magnetic) field.

A. Integral Equations

Let a hole in the planez = 0 be illuminated by a far magnetic
field H0 from z > 0 side. We assume that the hole center co-
incides with the origin of the plane coordinates(u, v), and the
field is directed alonĝu. One can decompose this far field as
H0/2 + H0/2 = H0 for z > 0, and asH0/2 − H0/2 = 0 for
z < 0, and consider two separate problems — the symmetric
and the antisymmetric one [6], [9]. For a zero thickness plane,
the symmetric magnetic problem is trivial (the field isH0/2 ev-
erywhere). The antisymmetric problem can be reduced to the
integral equation [9] for the functionG(Er ) = 2Hz(Er , 0)/H0∫

h
dEr ′G(Er ′)K (Er , Er ′) = u , (2)

whereEr = (u, v), the integration runs over the aperture, and the
kernel is symmetric

K (Er , Er ′) = 1

4π2

∫
dEσ
σ

ei Eσ(Er −Er ′) = 1

2π |Er − Er ′| . (3)

If Eq. (2) is solved, the magnetic susceptibility is [9]

ψu =
∫

h
dEr ′uG(Er ′) . (4)

For an axisymmetric aperture, one can simplify Eq. (2) using
u = r cosϕ, substitutingG(Er ) = g(r ) cosϕ, and intergating
over the polar angleϕ′. It yields∫

[h]
dr ′r ′g(r ′)Km(r, r ′) = r , (5)

with the following kernel

Km(x, y) =
∫ ∞

0
dσ J1(σ x)J1(σ y) (6)
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whereJn(x) is the n-th order Bessel function of the first kind,
and2F1 is the Gauss hypergeometric function. This kernel has a
ln-singularity atx = y

Km(x, y) ' 8xy

π(x + y)3

(
ln

x + y

|x − y| + 2 ln 2− 2

)
+ O(|x − y| ln |x − y|) . (7)

The magnetic susceptibility in this case is

ψ = π

∫
[h]

drr 2g(r ) . (8)



            
In Eqs. (5) and (8) symbol [h] denotes the interval of the radius-
vector variation: [h] = [0, b] for a circular hole of radiusb, and
[h] = [a, b] for an annular cut with inner radiusa and outer
radiusb.

In a similar way, a solutionf (r ) of the electrostatic problem
satisfies the integral equation∫

[h]
dr ′r ′ f (r ′)Ke(r, r ′) = 1 , (9)

with a more singular [O
(
(x − y)−2

)
] kernel

Ke(x, y) =
∫ ∞

0
dσσ 2J0(σ x)J0(σ y) . (10)

The electric polarizability of the axisymmetric hole is

χ = 2π

∫
[h]

drr f (r ) . (11)

A solution g(r ) of the integral equation (5) must have the
correct singular behavior near the thin metal edge:g(r ) ∝ 1−1/2

when1 = b − r → 0 or1 = r − a → 0. For the problem (9),
the function f (r ), which is proportional to the electric potential,
must behave as

√
1 near the edge to provide for the correct

singularity1−1/2 of the electric field. In the case of a circular hole
of radiusb the exact solutions of Eqs. (5) and (9) are known [4].
They areg(r ) = 4r/(π

√
b2 − r 2) and f (r ) = 2

√
b2 − r 2/π ,

substituting of which in (8) and (11) gives the polarizabilities of
a circular hole cited in Introduction.

B. Narrow Cut: Analytical Solution

Suppose the widthw = b − a of the gap is small,w ¿
b. For a narrow annular cut, the electric polarizability can be
approximated by that of a narrow (yet bented) slot of widthw

and length 2πb À w asχ ' π2w2b/4, see [8]. It is obvious that
χ is small compared toψ , since the normal electric field does
not penetrate far through the narrow gap, unlike the tangential
magnetic field on the parts of the annular cut which are parallel
to its direction.

Introducing dimensionless variablesx = r ′/b and y = r/b,
we are looking for a solution of Eq. (5) in the formg(x) =
C(x)/

√
(1 − x)(x − ρ), whereρ = a/b, andC(x) is a regular

function in the interval [ρ, 1]. For a narrow gapδ ≡ 1− ρ ¿ 1,
and one can expandC(x) asC(x) = C+ O(δ). Substituting this
into Eq. (5) and keeping only the singular part (7) of the kernel
(the rest would give correctionsO(δ) to the RHS) leads to the
equation

1 = C

π

∫ 1

ρ

dx [ ln(8/|x − y|) − 2 ]√
(1 − x)(x − ρ)

, (12)

where we neglected termsO(δ ln δ) in the RHS. Replacing vari-
ablesx = 1 − uδ, y = 1 − vδ, and using the identity∫ 1

0

du ln |u − v|√
u(1 − u)

= −2π ln 2 ,

we get from (12)

C = [ ln(32/δ) − 2]−1 . (13)
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Figure. 1. Magnetic susceptibility (in units ofb3) of a narrow
annular cut versus its relative widthw/b: solid line for (14),
long-dashed line for octagon model (15), and short-dashed line
for slot model (16). The dotted line shows the susceptibility of
the circular holeψ/b3 = 8/3.

Then from Eq. (8) the magnetic susceptibility of a narrow (w =
b − a ¿ b) annular cut in a thin plate is

ψ = π2b2a

ln(32b/w) − 2
. (14)

It is interesting to compare Eq. (14) with the estimate [8] ob-
tained by approximating the annular cut with an octagon and
using the magnetic susceptibilities for narrow slots:

ψo = 4

3

(π

4

)4 b3

ln(2πb/w) − 7/3
. (15)

While the behavior is similar, this estimate is a few times smaller
than (14), see Fig. 1. Moreover, even a more extreme model —
two long slots of length 2b and widthw oriented parallel to the
magnetic field — give the susceptibility

ψm = 4

3

πb3

ln(16b/w) − 7/3
, (16)

which is still smaller than Eq. (14), see Fig. 1.
As seen from Fig. 1, the susceptibility (14) becomes close to

that of a circular hole for relatively narrow gaps,w/b ≥ 0.1. To
check this surprising result, and to find the applicability range
for Eq. (14), we proceed below with a variatonal study of Eq. (5).

C. Wide Cut: Variational Approach

An elegant variational technique for polarizabilities has been
developed in [6]. Multiplying Eq. (5) byrg(r ) and integrating
over r , we convert it to the following variational form for the
magnetic susceptibilityψ

πb3

ψ
=

∫ 1
ρ

xdx
∫ 1
ρ

ydy g(x)Km(x, y)g(y)[∫ 1
ρ

x2 dx g(x)
]2 . (17)

A solutiong(x) of Eq. (5) minimizes the RHS of Eq. (17). We
are looking for it in the form of a series

g(x) =
∞∑

n=0

cngn(x) with (18)
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Figure. 2. Magnetic susceptibility (in units ofb3) of an annular
cut versus its relative widthw/b. Thin points show the zeroth
iteration, and thick points are for the second one. The solid line
corresponds to Eq. (14) for narrow gaps, and the dotted line is
the limit of a circular hole,w = b.

g0(x) = 1√
(1 − x)(x − ρ)

, gk(x) = Tk−1

(
2x − ρ − 1

1 − ρ

)
,

wherecn are unknown coefficients, andTn(x) are Chebyshev’s
polynomials of the first kind. Denotingdn = ∫ 1

ρ
dxx2gn(x) and

an = cndn, we define the matrix

Kkn =
∫ 1

ρ

xdx
∫ 1

ρ

ydy gk(x)Km(x, y)gn(y)/(dkdn) , (19)

and convert Eq. (17) into the following form

πb3

ψ
=

∑
k,n akKknan(∑

n an
)2 . (20)

Following [6], one can prove that minimizing the RHS of Eq. (20)
yields

ψ = πb3
∑
k,n

(
K −1

)
kn

, (21)

where matrixK −1 is the inverse of the matrixK , Eq. (19).
The further procedure is straightforward:nth iteration (n =
0, 1, 2, . . .) corresponds to the matrix (19) truncated to the size
(n + 1) × (n + 1). In the zeroth iteration the truncated matrix is
merely a number,K00; it corresponds to the analytical study of
Sect. II.B. All integrations and matrix inversions have been car-
ried out usingMathematica. Calculations show that only even
terms of the series (18) contribute, i.e.c1 = c3 = . . . = 0, and,
effectively, one can useg = g0 +c2T1 +c4T3 + . . ., and squeeze
matrix K removing odd lines and rows. The results forψ versus
the cut width are shown in Fig. 2. As one can see, the zeroth
iteration, as well as the analytical solution (14), is good for nar-
row gaps,w/b ≤ 0.15, but it is also not bad for wide ones. The
process practically converges in three iterations (effective 0,1,2)
for the whole range of the cut width 0≤ w/b ≤ 1.

III. Impedances
The beam-chamber coupling impedances can be obtained us-

ing formulas from [1], [2], [3] and polarizabilities found in

Sect. II. For example, a narrow annular cut of radiusb and width
w ¿ b on the thin wall of a circular pipe of radiusr À b
produces the longitudinal impedance

Z(ω) = − i Z0ω(ψ − χ)

8π2cr2
' − i Z0ωb3

8cr2 [ ln(32b/w) − 2]
. (22)

This result can be used to estimate the impedance of a button-type
BPM. Taking into account the wall thickness reduces the esti-
mate, cf. [6], [8]. For other cross sections of the chamber,Re Z,
and the transverse impedance, see [3] and references therein.
Note that the impedance (22) of a narrow cut withw/b > 0.05
is larger than (but less than twice) that of a circular hole with
radiusb, and tends to the last one whenw → b.

IV. Conclusions
The magnetic susceptibility of an annular cut in a thin wall

is calculated using the analytical and variational methods. The
estimate for the coupling impedance of a button-type BPM is
obtained.

The electro- and magnetostatic problems considered above can
also be solved numerically. With boundary conditions which en-
sure a given homogeneous field far from the aperture plane, a
static electric or magnetic potential can be computed using stan-
dard codes. We have done this for the electric polarizability of an
axisymmetric aperture, in which case the problem is effectively
a 2-D one, using thePOISSONcode. Results for a narrow gap
and a hole coincide with the expected ones. The case of a thick
wall can be also studied in this way. Unfortunately, for the mag-
netic problem, as well as for an arbitrary aperture, this approach
requires 3-D codes and cumbersome computations.

We plan a further study using different methods to take into
account the effects due to the wall thickness.

The author would like to thank Dr. R.L. Gluckstern and Dr.
R.K. Cooper for useful discussions.
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