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Abstract A. Integral Equations

The longitudinal and transverse coupling impedances of a small-€t a hole in the plane = 0 be illuminated by a far magnetic
discontinuity on the accelerator chamber wall can be expresseti@il Ho from z > 0 side. We assume that the hole center co-
terms of the electric and magnetic polarizabilities of the discotiicides with the origin of the plane coordinates v), and the
tinuity. The polarizabilities are geometrical factors and can ti€ld is directed alongl. One can decompose this far field as
found by solving a static (electric or magnetic) problem. HowHo/2 + Ho/2 = Ho for z > 0, and asHo/2 — Ho/2 = 0 for
ever, they are known in the explicit analytical form only for afew < 0, and consider two separate problems — the symmetric
simple-shaped discontinuities, for example, for an elliptic hoind the antisymmetric one [6], [9]. For a zero thickness plane,
in a thin wall. In the present paper the polarizabilities of a ringhe symmetric magnetic problem is trivial (the fieldHg/2 ev-
shaped cut in the wall are obtained. The results are appliecefywhere). The antisymmetric problem can be reduced to the
calculate the coupling impedances of button-type beam positiiegral equation [9] for the functioB (7) = 2H,(7, 0)/Ho
monitors.
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| Introduction wherel” = (u, v), the integration runs over the aperture, and the
The coupling impedances of a small discontinuity on the wadernel is symmetric

of the vacuum chamber of an accelerator have been calculated in 1 da 1
terms of the polarizabilities of the discontinuity [1], [2], [3]. The KT, fr)=-— | —e® ™ =___ =~ (3)
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basicidea of the approach used is related with the Bethe theory of
diffraction by small holes [4], which shows that fields produceg Eg. (2) is solved, the magnetic susceptibility is [9]

by a hole can be approximated by those due to effective dipoles

induced on the hole by an incident (beam) field. The magnitudes Yy = /dF’uG(F/) ) (4)
of the effective electri®® and magnetitM dipoles are expressed h

through the incident field&", H at the hole location without

v For an axisymmetric aperture, one can simplify Eq. (2) using
hole [4], [5]

U = r cosyp, substitutingG(r) = g(r)cosy, and intergating
h h over the polar angle’. It yields
P, = —xekE;/2, M. =vyH'/2, 1)
Te! / /

wherey is the electric polarizability ang¢r is the magnetic sus- /[h] drrgr)Kmr,r) =r, ®)
ceptibility of the holeyis the normal vector to the hole plane, and | )
7 is the tangential one. In generdl,is a symmetric 2D-tensor, with the following kernel
but we will consider here only axisymmetric holes. 00

The hole polarizabilities are known in an analytical form only Km(X, y) = /0 do Ji(oX) Ji(ay) (6)
for a few simple cases. For a circular hole of radiuis a thin 31 2
wall ¢ = 8b%/3 andy = 4b3/3 [4]. There are also analytical 2: ?> +{X <y}

X
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results for elliptic holes in a thin wall [5]. The polarizabilities 22
for the case of a thick wall have been studied using a variational _ Xy 33 ., &y
technique in [6] for circular holes, and in [7] for elliptic holes. T o2x+y3t N\ 22T xry2)

There are also some approximate formulae for slots [8]. . : ) :
PP - (8] where J,(X) is the n-th order Bessel function of the first kind,
In the present paper, the polarizabilities of an annular cut in . ) : .
. . : and, F; is the Gauss hypergeometric function. This kernel has a
a thin wall are obtained and used to estimate the beam coupllln

impedances of the button-type beam position monitors (BPqu%mgularlty ax =y

N 8xy X+y
Il. General Analysis KmX.y) = T y)e ('” x—yl T 2In2— 2)
When the wavelength is large compared to the hole size, the + O(x —ylIn|x =y . (7)

polarizabilities can be obtained from the electro- or magnetostapﬁ
problem: find the fields due to an aperture (hole) in a metal plane
when it is illuminated from one side by a homogeneous static V= n/ drr2g(r) ®)
(normal electric or tangential magnetic) field. [h] ’

e magnetic susceptibility in this case is



In Egs. (5) and (8) symboh|] denotes the interval of the radius- 3
vector variation: fi] = [0, b] for a circular hole of radiug, and
[h] = [a, b] for an annular cut with inner radius and outer
radiusb.

In a similar way, a solutiorf (r) of the electrostatic problem
satisfies the integral equation

/ dr'r’ f(rHKe(r,r'y =1, 9
[h]
with a more singular® ((x — y)~2)] kernel
_ o0 2 . .
Ke(X, y) = /0 doo“Jo(oX)Jo(oy) . (10) w/b
The electric polarizability of the axisymmetric hole is Figure. 1. Magnetic susceptibility (in units bf) of a narrow
annular cut versus its relative widih/b: solid line for (14),
X = 27,/ drrf(r). (11) long-dashed line for octagon model (15), and short-dashed line
(hl for slot model (16). The dotted line shows the susceptibility of

i 3 _
A solution g(r) of the integral equation (5) must have théhe circular hole) /b = 8/3.

correct singular behavior near the thin metal edge) oc A~%/?
whenA =b—-r — 0orA =r —a — 0. For the problem (9), Then from Eqg. (8) the magnetic susceptibility of a narraw=£
the functionf (r), which is proportional to the electric potentialb — a « b) annular cut in a thin plate is
must behave as/A near the edge to provide for the correct 212

, 1/ . . mba
singularityA —1/2 of the electric field. Inthe case of acircular hole Y=
of radiusb the exact solutions of Egs. (5) and (9) are known [4]. In(320/w) -2
They areg(r) = 4r/(nv/b2 —r2) and f(r) = 2v/b%2 —r2/m, It is interesting to compare Eq. (14) with the estimate [8] ob-
substituting of which in (8) and (11) gives the polarizabilities dfined by approximating the annular cut with an octagon and

(14)

a circular hole cited in Introduction. using the magnetic susceptibilities for narrow slots:
B. Narrow Cut: Analytical Solution Vo = f' (Z)“ b® ) (15)
°73\4/) In@rb/w)—7/3

Suppose the widthw = b — a of the gap is smallw «
b. For a narrow annular cut, the electric polarizability can p&hile the behavior is similar, this estimate is a few times smaller
approximated by that of a narrow (yet bented) slot of width than (14), see Fig. 1. Moreover, even a more extreme model —
andlength 2b > w asy ~ n2w?b/4, see [8]. Itis obvious that two long slots of length 2 and widthw oriented parallel to the
x is small compared tg/, since the normal electric field doegnagnetic field — give the susceptibility
not penetrate far through the narrow gap, unlike the tangential 4 b3
magnetic field on the parts of the annular cut which are parallel Ym=5i—am 535
to itgs direction. P P 3In(16b/w) —7/3

Introducing dimensionless variablgs= r’/b andy = r/b, Which is still smaller than Eq. (14), see Fig. 1.
we are |00king for a solution of Eq (5) in the forg(x) = As seen from Flg 1, the SUSCGptib”ity (14) becomes close to
C(x)// @A =x)(X — p), wherep = a/b, andC(x) is a regular that of a circular hole for relatively narrow gaps/b > 0.1. To
function in the interval p, 1]. Foranarrowgap = 1— p <« 1, check this surprising result, and to find the applicability range
and one can expar@i(x) asC(x) = C+ O(s). Substituting this for Eq. (14), we proceed below with a variatonal study of Eq. (5).
into Eq. (5) and keeping only the singular part (7) of the kern&l
(the rest would give correctior®(8) to the RHS) leads to the ™

(16)

Wide Cut: Variational Approach

equation An elegant variational technique for polarizabilities has been
L developed in [6]. Multiplying Eq. (5) byg(r) and integrating
1— E/ dx[In(8/[x —y|) — 2] (12) Overr, we convert it to the following variational form for the
), JT=-XX-p) magnetic susceptibilitys
where we neglected tern@(s In §) in the RHS. Replacing vari- b3 fpl xdx fpl ydy gx)Km(X, y)a(y)
ablesx = 1 — ué, y = 1 — vé, and using the identity 7 = 1 2 : 17
) [fp X2 dx g(x)]
dulnju—v|
/c; Ao —27In2, A solutiong(x) of Eq. (5) minimizes the RHS of Eq. (17). We

are looking for it in the form of a series
we get from (12)

_ g(xX) = ) CaGn(X)  with (18)
C=[In(B2/8)—2]1. (13) ;



3 Sect. Il. For example, a narrow annular cut of radiasd width
............................ P S Y S w <« b on the thin wall of a circular pipe of radius > b
i . . produces the longitudinal impedance

2f 7( )__iZow(iﬂ—X)N_ i Zowb?®
W @)= 8r2cr2  ~  8cr?[In(32b/w) — 2] °

(22)

1 This result can be used to estimate the impedance of a button-type
BPM. Taking into account the wall thickness reduces the esti-
mate, cf. [6], [8]. For other cross sections of the chamBerZ
and the transverse impedance, see [3] and references therein.
0 02 0 08 08 1 Note that the impedance (22) of a narrow cut witpb > 0.05
' ' ' ' is larger than (but less than twice) that of a circular hole with
w/b radiusb, and tends to the last one when— b.

Figure. 2. Magnetic susceptibility (in units bf) of an annular .
cut versus its relative widtiw/b. Thin points show the zeroth IV. Conclusions

iteration, and thick points are for the second one. The solid lineThe magnetic susceptibility of an annular cut in a thin wall
corresponds to Eq. (14) for narrow gaps, and the dotted linesgscalculated using the analytical and variational methods. The

the limit of a circular holew = b. estimate for the coupling impedance of a button-type BPM is
obtained.
1 X —p—1 The electro- and magnetostatic problems considered above can
go(X) = ————, k(X)) =Tx1 <—) ,  also be solved numerically. With boundary conditions which en-
VA =X)(X=p) 1-p

sure a given homogeneous field far from the aperture plane, a
wherec, are unknown coefficients, ani(x) are Chebyshev’s static electric or magnetic potential can be computed using stan-
polynomials of the first kind. Denotingd, = [pl dxx?gn(x) and dard codes. We have done this for the electric polarizability of an
a, = C,dn, we define the matrix axisymmetric aperture, in which case the problem is effectively
a 2-D one, using thPOISSONcode. Results for a narrow gap
and a hole coincide with the expected ones. The case of a thick
wall can be also studied in this way. Unfortunately, for the mag-
netic problem, as well as for an arbitrary aperture, this approach
and convert Eq. (17) into the following form requires 3-D codes and cumbersome computations.

b3 K We plan a further study using different methods to take into

wo_ 2 kcn AKindn (20) account the effects due to the wall thickness.

1 1
Kkn=/ xdx/ ydy g(X)Km(X, Y)gn(y)/(dkdn) ,  (19)
P o

> -
v (Z“ a”) The author would like to thank Dr. R.L. Gluckstern and Dr.
Following [6], one can prove that minimizing the RHS of Eq. (20-K. Cooper for useful discussions.
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lll. Impedances

The beam-chamber coupling impedances can be obtained us-
ing formulas from [1], [2], [3] and polarizabilities found in



