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Abstract g moves along the chamber axis, the fields harmoBi&sH®

A general theory of the beam interaction with small discontin produced by this charge on the chamber wall without hole would

ities of the vacuum chamber is developed taking into account

the reaction of radiated waves back on the discontinuity. The ‘ enm(0)V, enm(D)
reactive impedance calculated earlier is reproduced as the firsEr (z; ) = ZoH? = —Zoqékzz B 1)
order, and the resistive one as the second order of a perturbation n.m nm

theory based on this general approach. The theory also gives, in

a very natural way, the results for the trapped modes due to srdierek’y, enm(P) are eigenvalues and orthonormalized eigen-
discontinuities obtained earlier by a different method. functions (EFs) of the 2D boundary problemSn

i (Vz‘i‘kﬁm) Q’lm:0§ enm|3520- (2)
l. Introduction
A common tendency in design of modern accelerators is tgre V is the 2D gradient in plan&; k = »/c; b means an

minimize beam-chamber coupling impedances to avoid be&tward normal unit vectory s a unit vector tangent to the
instabilities and reduce heating. Even contributions from tirgoundaryd S of the chamber cross secti@and{b, 7, z} form
discontinuities like pumping holes have to be accounted for, da@d&RHS basis.
to their large number, which makes analytical methods for cal-
culating the impedances of small discontinuities very importarft: Fields

According to the Bethe theory of diffraction by small holes [1], At distanced such thath « | < b, the fields radiated by

the fields diffracted by a hole can be found as those radiatedg nole into the pipe are equal to those produced by effective
effective electric and magnetic dipoles. The coupling impedanggoles [1], [7}

of pumping holes in the vacuum chamber walls has been calcu-

lated earlier [2], [3], [4] using this idea. The imaginary partof — p, = _ygEN/2; M, = (r H! + v HDY /2;

the impedance is proportional to the difference of hole polariz- = W HD 4y HY 2 @)
abilities (¥ — x), where the magnetic susceptibiliy and the T = 220721

electric polarizabilityy are small compared to the cubed typicaﬁ’vhere superscript” means that the fields are taken at the hole.
dimensiorb® of the chamber cross section. From consideratio eneraly is a symmetric 2D-tensor. If the hole is symmetric

of the energy radiated into the chamber and through the hole, its symmetry axis is parallel Ipthe skew terms vanish, i.e
real part of the hole impedance comes out to be proportional fo Vge =0 T
(W2 + x?), being usually much smaller than the reactance. * °,, =

n th " turther develop thi tical When the effective dipoles are obtained, e.g., by substitut-
n the present paper we further develop this analytica ag]é beam fields (1) into Egs. (3), one can calculate the fields in

proach by taking ir!to .account the reaction of radiated way, chamber as a sum of waveguide eigenmodes excited in the
back on the discontinuity. It leads to a more general theory, a amber by the dipoles, and find the impedance. This approach

allows us to reproduce easily all prev.ious re;su_lt_s, including thoﬁgs been carried out in [2], and for an arbitrary chamber in [8].
about trapped modes due to small discontinuities [5]. While o lowever, a more refined theory should take into account the re-
consideration here is restricted to small holes, it can be read] ’

. i T >80 ¥tion of radiated waves back on the hole. The TM-eigenmodes
applied to other small discontinuities like enlargements or iris

. . R aéntribution to the radiated fields is a series
because the idea of effective polarizabilities works equally we

in these cases also [6]. F— Z [A:mﬁrrme(z) n A;mlf;me(—z)] ’ @)
nm

Il. General Analysis

Let us consider an infinite cylindrical pipe with an arbitrar
cross sectiorS and perfectly conducting walls. Theaxis is
directed along the pipe axis, a hole is located at the pBirzt(:
0), and a typical hole sizh satisfiesh < b. To evaluate the Lpolarizabilitiesy, x are related to the effective ones, am used in [7], [2]
coupling impedance one has to calculate the fields induced inthe "_ "~ "> and(;n’: — /2, so that for a circular hole of radiasin a thin
chamber by a given current. If an ultrarelativistic point chargeall ¢ = 8a%/3 andy = 4a%/3.

)yvherelf means eitheE or H and superscriptst’ denote waves
radiated respectively in the positive (z,> 0) or negative £,
z < 0)direction. The fields ofn, m}th TM-eigenmode in Eq. (4)



are expressed [7] in terms of EFs (2)

Ef = K .emexp®lhm2): HF =0;
Ef iI‘nnﬁenmexp(ianz) ;
e =

ik >
Z—2 X Venmexp(xI'nm2) ,
0

where propagation facto,m, = (k2 —
placed by—iBym with Bnm = (k% —

found [8] using the Lorentz reciprocity theorem
Afj]:m = aanr + bnmPv 5

ikZg
2ank§m

1
= — VU h , b = —
m €m nm 280k§m

vl .

B. Impedance
The longitudinal impedance of the hole is defined as

5) Z(k) =

—% / dze'¥’E,(0, z; w) , (14)

where the field at the axis is given by Eq. (4) with coefficients
(6) and (8) in which the corrected near-hole fields (10)-(12) are

k?)¥2 should be re- substituted. It yields
k2 )Y2 for k > knm. For
given values of dipoles (3) the unknown coefficieAts, can be

IkZOé2 [ 1;Z/'t:'r
Zky = - - 15
2 5/ X
(6) R . X (31— X)) ] ’

whereg, = EE/(Zoq) =-> eS(O)VVeS(B)/kg is merely the
normalized electric field produced at the hole location by the
beam moving along the chamber axis, cf. Eq. (1). In deriving

(7)

In a similar way, the contribution of TE-eigenmodes to the radihis result we have neglected the coupling terms betvigel,
ated fields is given by an analogue of Eq. (4) with the excitatiemmd H,, cf. Egs. (10)-(12), which contribute to the third order of

coefficients

Br:::m = icanr + dnmpu + Qanz s

1 1
Com = 2k’2 hﬂm ;0 Om= Fﬂm Em 5
ik
dm = —=————V,h |
nm ZZOEOFr/]mklz nm

an expansion discussed below, and also have taken into account
thatwrz = WZT-
For a small discontinuity, polarizabilities, x = O(h®), and
they are small compared k3. If we expand the impedance (15)
in a perturbation series in polarizabilities, the first order gives

kZe2
_IKZoB L -

(8)

Zy(k) = x (16)

(9)

that is exactly the inductive impedance obtained in [8] for an
arbitrary cross section of the chamber. For a particular case of

where EFsh,, satisfy the boundary problem (2) with the Neua circular pipe, from either direct summation in (1) or applying

mann boundary conditio¥,hpymlys = 0, andk;]2
sponding eigenvalues.

-, are corre- the Gauss law, we gé = 1/(2rb), substitution of which into

Eq. (16) leads to a well-known result [2], [3]. From a physical

Now we can add corrections to the beam fields (1) due to tpeint of view, keeping only the first order term (16) corresponds

radiated waves in the vicinity of the hole. It gives

EE + Yz 2;20 H; + wZZE)/( ZoH,

1—x(Z1-3%) '

H? + wrz(EZ - Eé) Hz
1— 9 (Z2— X))

XEEv/Zo+ Yz 23H,

1— 2.2 ’

E,

H.
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H,

where 6 = {n, m} is a generalized index)
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to dropping out all radiation corrections in Egs. (10)-(12).
These corrections first reveal themselves in the second order
term
(20) 722
Z & !
Zo(k) = _% [WIZI(EZ - 2:2) + %222/3
)],

(12) which at frequencies above the chamber cutoff has both a real
and imaginary part. The real part of the impedance is

17)
(1) + x4z -

k3Z0&
Rezk) = —— { stkzﬂ’) (18)
’ = (V) | B (Vhl)®
R [Z pic L iag
k) h 2 < hh
N ps (V&) (V:hs)

[pasd s

where the sums include only a finite number of the eigenmodes
propagating in the chamber at a given frequency, i.e. those with

(13)

Since this consideration works at distances not shortet tlzanal ks < k ork{ < k.
| > h, the summation in Eq. (13) should be restricted to valuesThe real part of the impedance is related to the poscat-

of s = {n, m} such thaksh < 1 andk;h < 1.

tered by the hole into the beam pigee Z = 2P/qg?, and can



be calculated in an alternative way from energy consideratiofisrong” sign. However, due to the coupling betweEn and
P =Y (A2PE + B2P{M)), where we sum over all propagat-H,, a non-trivial solutiorE,, H, # 0 of simultaneous equations
ing modes in both directions, arféi means the time-averaged(10) and (12) can exist, even wh&® = 0. The corresponding

power radiated irsth eigenmode: P{®) = kBsk2/(2Zo) and condition has the form

P = ZokBLk?/2. Substituting beam fields (1) into Egs. (6)-

9) for the coefficientshs and B; and performing calculati RS PRV h 2

(9) for the coefficientsAs and Bs and performing calculations Com = 2 [wzzknm (hom)™ = x (V:hi) ] ) (22)

gives the result (18). Such an alternative derivation of the real
part has been first carried out in Ref. [4] for a circular pipe wityhich gives the frequency of the trapped,FEmode.

a symmetric untilted holey(;; = 0). The result (18) for this  One can easily show that for the particular case of a circular
particular case coincides with that of [4]. Moreover, in this cagsipe the results (20)-(22) coincide with those obtained by a dif-
at high frequencies the series can be summed approximatelyfknt method in Ref. [5]. For more detail, a physical picture of,

to give Re Z = Zok*&(yZ, + x?)/(127), which can also be and resonance impedances due to trapped modes, see [5] and [9].
obtained by calculating the energy radiated by the dipoles in a

half-space [8]. Note that the addition#P,-term in Eq. (18) I1l. Conclusions
could give a leading contribution tBe Z e.g., for a long and

slightly tilted slot. The analytical approach discussed above provides a general

picture for the coupling impedance of a small discontinuity of
C. Trapped Modes the vacuum chamber. It gives the real and imaginary part of
: _ . the impedance, as well as trapped modes. Results for typical
_ So far we considered the perturbation expansion of Eq. (Isanes of the chamber cross section (circular or rectangular) are
implicitly assuming that correction termB(y) and O(x) in  gagily obtained from the expressions above using specific EFs,
the d_enommg_tors Of,'ts RHS are sr.nalll compared to,l' Un e, e.g., in[7] or [9]. The transverse impedance can be derived
certain conditions thls assumption is incorrect, and .|t Ieat_jsi a similar way [8].
some non-perturbative results. Indeed, at frequencies slight ¥\e have not considered explicitly effects of the wall thickness,
below the chamber CUt'?ﬁS' @k —k <k, —or the/ Same assuming that the hole polarizabilities are the inside ones [3],
with ,replacemenks — ks, —asingle term in su2n§1,221:/22, and they include these effects. We also neglected the radiation
or 23/b(_acc_)mes very_large, due to very S”?‘-“ - (kS_ ~ k ) escaping through the hole, contributions of which to the real part
(or I'y) in its denominator, and then the “corrections’™ or  \ta impedance are estimated [2], [3], [5], and usually are small.
x X can be of the order of 1. As a result, one of the denom|—At high frequencies (near or above the chamber cutoff) the

nators of the RHS of Egs. (15) can vanish, which correspo;@tuw interaction of many holes is important and can cause
to a resonance of the coupling impedance. On the other hapd,,ances if the hole pattern is periodic, e.g. [10], [4]. A more

vanishing denominators in Egs. (10)-(12) mean the existence .8l njete theory should take this interaction into account.
non-perturbative eigenmodes of the chamber with a hole, since
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1 2
an =~ Zwﬂ: (Vueﬂm) . (20)

This equation gives us the frequency shiff of the trapped
TM-mode down from the cutoff (E)

Af 1 4
—= ~ =2 (Vueh) - (21)
B = 3¢,V (V)

One can easily see that denominator{1x (¥, — X})] in
Eq. (10) does not vanish because singular terms;irhave a



