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Abstract

A general theory of the beam interaction with small discontinu-
ities of the vacuum chamber is developed taking into account
the reaction of radiated waves back on the discontinuity. The
reactive impedance calculated earlier is reproduced as the first
order, and the resistive one as the second order of a perturbation
theory based on this general approach. The theory also gives, in
a very natural way, the results for the trapped modes due to small
discontinuities obtained earlier by a different method.

I. Introduction

A common tendency in design of modern accelerators is to
minimize beam-chamber coupling impedances to avoid beam
instabilities and reduce heating. Even contributions from tiny
discontinuities like pumping holes have to be accounted for, due
to their large number, which makes analytical methods for cal-
culating the impedances of small discontinuities very important.
According to the Bethe theory of diffraction by small holes [1],
the fields diffracted by a hole can be found as those radiated by
effective electric and magnetic dipoles. The coupling impedance
of pumping holes in the vacuum chamber walls has been calcu-
lated earlier [2], [3], [4] using this idea. The imaginary part of
the impedance is proportional to the difference of hole polariz-
abilities (ψ − χ), where the magnetic susceptibilityψ and the
electric polarizabilityχ are small compared to the cubed typical
dimensionb3 of the chamber cross section. From considerations
of the energy radiated into the chamber and through the hole, the
real part of the hole impedance comes out to be proportional to
(ψ2+ χ2), being usually much smaller than the reactance.

In the present paper we further develop this analytical ap-
proach by taking into account the reaction of radiated waves
back on the discontinuity. It leads to a more general theory, and
allows us to reproduce easily all previous results, including those
about trapped modes due to small discontinuities [5]. While our
consideration here is restricted to small holes, it can be readily
applied to other small discontinuities like enlargements or irises
because the idea of effective polarizabilities works equally well
in these cases also [6].

II. General Analysis

Let us consider an infinite cylindrical pipe with an arbitrary
cross sectionS and perfectly conducting walls. Thez axis is
directed along the pipe axis, a hole is located at the point (Eb, z=
0), and a typical hole sizeh satisfiesh ¿ b. To evaluate the
coupling impedance one has to calculate the fields induced in the
chamber by a given current. If an ultrarelativistic point charge

q moves along the chamber axis, the fields harmonicsEEb, EHb

produced by this charge on the chamber wall without hole would
be

Eb
ν (z;ω) = Z0Hb

τ = −Z0qeikz
∑
n,m

enm(0)∇νenm(Eb)
k2

nm

, (1)

wherek2
nm, enm(Er ) are eigenvalues and orthonormalized eigen-

functions (EFs) of the 2D boundary problem inS:(∇2+ k2
nm

)
enm = 0 ; enm

∣∣
∂S
= 0 . (2)

Here E∇ is the 2D gradient in planeS; k = ω/c; ν̂ means an
outward normal unit vector, ˆτ is a unit vector tangent to the
boundary∂S of the chamber cross sectionS, and{ν̂, τ̂ , ẑ} form
a RHS basis.

A. Fields

At distancesl such thath ¿ l ¿ b, the fields radiated by
the hole into the pipe are equal to those produced by effective
dipoles [1], [7]1

Pν = −χε0Eh
ν /2; Mτ = (ψττ Hh

τ + ψτzHh
z )/2;

Mz = (ψzτ Hh
τ + ψzzH

h
z )/2 , (3)

where superscript ’h’ means that the fields are taken at the hole.
In general,ψ is a symmetric 2D-tensor. If the hole is symmetric,
and its symmetry axis is parallel toẑ, the skew terms vanish, i.e.
ψτz = ψzτ = 0.

When the effective dipoles are obtained, e.g., by substitut-
ing beam fields (1) into Eqs. (3), one can calculate the fields in
the chamber as a sum of waveguide eigenmodes excited in the
chamber by the dipoles, and find the impedance. This approach
has been carried out in [2], and for an arbitrary chamber in [8].
However, a more refined theory should take into account the re-
action of radiated waves back on the hole. The TM-eigenmodes
contribution to the radiated fields is a series

EF =
∑
nm

[
A+nm
EF+nmθ(z)+ A−nm

EF−nmθ(−z)
]
, (4)

where EF means eitherEE or EH and superscripts ’±’ denote waves
radiated respectively in the positive (+,z > 0) or negative (−,
z< 0) direction. The fields of{n,m}th TM-eigenmode in Eq. (4)

1Polarizabilitiesψ, χ are related to the effective onesαe, αm used in [7], [2]
asαe = −χ/2 andαm = ψ/2, so that for a circular hole of radiusa in a thin
wall ψ = 8a3/3 andχ = 4a3/3.



          
are expressed [7] in terms of EFs (2)

E∓z = k2
nmenm exp(±0nmz) ; H∓z = 0 ;

EE∓t = ±0nmE∇enm exp(±0nmz) ; (5)

EH∓t = ik

Z0
ẑ× E∇enm exp(±0nmz) ,

where propagation factors0nm = (k2
nm − k2)1/2 should be re-

placed by−iβnm with βnm = (k2 − k2
nm)

1/2 for k > knm. For
given values of dipoles (3) the unknown coefficientsA±nm can be
found [8] using the Lorentz reciprocity theorem

A±nm = anmMτ ± bnmPν , (6)

anm = − ikZ0

20nmk2
nm

∇νeh
nm ; bnm = 1

2ε0k2
nm

∇νeh
nm . (7)

In a similar way, the contribution of TE-eigenmodes to the radi-
ated fields is given by an analogue of Eq. (4) with the excitation
coefficients

B±nm = ±cnmMτ + dnmPν + qnmMz , (8)

cnm = 1

2k′2nm

∇τhh
nm ; qnm = 1

20′nm

hh
nm ;

dnm = − ik

2Z0ε00′nmk′2nm

∇τhh
nm , (9)

where EFshnm satisfy the boundary problem (2) with the Neu-
mann boundary condition∇νhnm|∂S = 0, andk′2nm are corre-
sponding eigenvalues.

Now we can add corrections to the beam fields (1) due to the
radiated waves in the vicinity of the hole. It gives

Eν = Eb
ν + ψzτ6

′
x Z0Hτ + ψzz6

′
x Z0Hz

1− χ(61−6′1)
, (10)

Hτ = Hb
τ + ψτz(62−6′2)Hz

1− ψττ (62−6′2)
, (11)

Hz = χ6′x Eν/Z0+ ψzτ6
′
3Hτ

1− ψzz6
′
3

, (12)

where (s= {n,m} is a generalized index)

61 = 1

4

∑
s

0s
(∇νeh

s

)2
k2

s

; 62 = k2

4

∑
s

(∇νeh
s

)2
0sk2

s

;

6′1 =
k2

4

∑
s

(∇τhh
s

)2
0′sk′2s

; 6′2 =
1

4

∑
s

0′s
(∇τhh

s

)2
k′2s

;

6′x = i
k

4

∑
s

hh
s∇τhh

s

0′s
; 6′3 =

1

4

∑
s

k′2s
(
hh

s

)2
0′s

. (13)

Since this consideration works at distances not shorter thanl , and
l > h, the summation in Eq. (13) should be restricted to values
of s= {n,m} such thatksh ≤ 1 andk′sh ≤ 1.

B. Impedance

The longitudinal impedance of the hole is defined as

Z(k) = −1

q

∫ ∞
−∞

dze−ikzEz(0, z;ω) , (14)

where the field at the axis is given by Eq. (4) with coefficients
(6) and (8) in which the corrected near-hole fields (10)-(12) are
substituted. It yields

Z(k) = − ikZ0ẽ2
ν

2

[
ψττ

1− ψττ (62−6′2)
(15)

+ ψ2
τz6

′
3−

χ

1− χ(61−6′1)
]
,

whereẽν ≡ Eb
ν /(Z0q) = −

∑
s es(0)∇νes(Eb)/k2

s is merely the
normalized electric field produced at the hole location by the
beam moving along the chamber axis, cf. Eq. (1). In deriving
this result we have neglected the coupling terms betweenEν , Hτ

andHz, cf. Eqs. (10)-(12), which contribute to the third order of
an expansion discussed below, and also have taken into account
thatψτz = ψzτ .

For a small discontinuity, polarizabilitiesψ, χ = O(h3), and
they are small compared tob3. If we expand the impedance (15)
in a perturbation series in polarizabilities, the first order gives

Z1(k) = − ikZ0ẽ2
ν

2
(ψττ − χ) , (16)

that is exactly the inductive impedance obtained in [8] for an
arbitrary cross section of the chamber. For a particular case of
a circular pipe, from either direct summation in (1) or applying
the Gauss law, we getẽν = 1/(2πb), substitution of which into
Eq. (16) leads to a well-known result [2], [3]. From a physical
point of view, keeping only the first order term (16) corresponds
to dropping out all radiation corrections in Eqs. (10)-(12).

These corrections first reveal themselves in the second order
term

Z2(k) = − ikZ0ẽ2
ν

2

[
ψ2
ττ (62−6′2)+ ψ2

τz6
′
3 (17)

+ χ2(6′1−61)
]
,

which at frequencies above the chamber cutoff has both a real
and imaginary part. The real part of the impedance is

ReZ2(k) = k3Z0ẽ2
ν

8

{
ψ2
τz

<∑
s

k′2s
(
hh

s

)2
k2β ′s

(18)

+ ψ2
ττ

[
<∑
s

(∇νeh
s

)2
βsk2

s

+
<∑
s

β ′s
(∇τhh

s

)2
k2k′2s

]

+ χ2

[
<∑
s

βs
(∇νeh

s

)2
k2k2

s

+
<∑
s

(∇τhh
s

)2
β ′sk′2s

]}
,

where the sums include only a finite number of the eigenmodes
propagating in the chamber at a given frequency, i.e. those with
ks < k or k′s < k.

The real part of the impedance is related to the powerP scat-
tered by the hole into the beam pipe,Re Z= 2P/q2, and can



            
be calculated in an alternative way from energy considerations:
P =∑s(A

2
s P(E)

s + B2
s P(H)

s ), where we sum over all propagat-
ing modes in both directions, andPs means the time-averaged
power radiated insth eigenmode: P(E)

s = kβsk2
s/(2Z0) and

P(H)
s = Z0kβ ′sk

′2
s /2. Substituting beam fields (1) into Eqs. (6)-

(9) for the coefficientsAs and Bs and performing calculations
gives the result (18). Such an alternative derivation of the real
part has been first carried out in Ref. [4] for a circular pipe with
a symmetric untilted hole (ψτz = 0). The result (18) for this
particular case coincides with that of [4]. Moreover, in this case
at high frequencies the series can be summed approximately [4]
to give Re Z = Z0k4ẽ2

ν(ψ
2
ττ + χ2)/(12π), which can also be

obtained by calculating the energy radiated by the dipoles in a
half-space [8]. Note that the additionalψ2

τz-term in Eq. (18)
could give a leading contribution toRe Z, e.g., for a long and
slightly tilted slot.

C. Trapped Modes

So far we considered the perturbation expansion of Eq. (15)
implicitly assuming that correction termsO(ψ) and O(χ) in
the denominators of its RHS are small compared to 1. Under
certain conditions this assumption is incorrect, and it leads to
some non-perturbative results. Indeed, at frequencies slightly
below the chamber cut-offs, 0< ks − k ¿ ks, — or the same
with replacementks → k′s, — a single term in sums6′1, 62,
or6′3 becomes very large, due to very small0s = (k2

s − k2)1/2

(or 0′s) in its denominator, and then the “corrections”ψ6 or
χ6 can be of the order of 1. As a result, one of the denomi-
nators of the RHS of Eqs. (15) can vanish, which corresponds
to a resonance of the coupling impedance. On the other hand,
vanishing denominators in Eqs. (10)-(12) mean the existence of
non-perturbative eigenmodes of the chamber with a hole, since
non-trivial solutionsE, H 6= 0 exist even for vanishing external
(beam) fieldsEb, Hb = 0. These eigenmodes are nothing but
the trapped modes studied in [5] for a circular waveguide with
a small discontinuity (see [9] for waveguides with an arbitrary
cross section).

Let us for brevity restrict ourselves to the caseψτz = 0 and
consider Eq. (11) in more detail. ForHb = 0 we have

Hτ

[
1− ψττ

k2
(∇νeh

nm

)2
40nmk2

nm

+ . . .
]
= 0 , (19)

where. . . means all other terms of the series62, 6
′
2. At fre-

quencyk ' knm slightly below the cutoffknm of the TMnm-mode,
the fraction in Eq. (19) is large due to small0nm in its denom-
inator, and one can neglect the other terms. Then the condition
for a non-trivial solutionHτ 6= 0 to exist is

0nm ' 1

4
ψττ

(∇νeh
nm

)2
. (20)

This equation gives us the frequency shift1 f of the trapped
TM-mode down from the cutofff (E)nm

1 f

f (E)nm

' 1

32k2
nm

ψ2
ττ

(∇νeh
nm

)4
. (21)

One can easily see that denominator [1− χ(61 − 6′1)] in
Eq. (10) does not vanish because singular terms in6′1 have a

“wrong” sign. However, due to the coupling betweenEν and
Hz, a non-trivial solutionEν, Hz 6= 0 of simultaneous equations
(10) and (12) can exist, even whenEb = 0. The corresponding
condition has the form

0′nm '
1

4

[
ψzzk

′2
nm

(
hh

nm

)2− χ (∇τhh
nm

)2]
, (22)

which gives the frequency of the trapped TEnm-mode.
One can easily show that for the particular case of a circular

pipe the results (20)-(22) coincide with those obtained by a dif-
ferent method in Ref. [5]. For more detail, a physical picture of,
and resonance impedances due to trapped modes, see [5] and [9].

III. Conclusions
The analytical approach discussed above provides a general

picture for the coupling impedance of a small discontinuity of
the vacuum chamber. It gives the real and imaginary part of
the impedance, as well as trapped modes. Results for typical
shapes of the chamber cross section (circular or rectangular) are
easily obtained from the expressions above using specific EFs,
see, e.g., in [7] or [9]. The transverse impedance can be derived
in a similar way [8].

We have not considered explicitly effects of the wall thickness,
assuming that the hole polarizabilities are the inside ones [3],
and they include these effects. We also neglected the radiation
escaping through the hole, contributions of which to the real part
of the impedance are estimated [2], [3], [5], and usually are small.

At high frequencies (near or above the chamber cutoff) the
mutual interaction of many holes is important and can cause
resonances if the hole pattern is periodic, e.g. [10], [4]. A more
complete theory should take this interaction into account.
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