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Abstract

A recent study [1] has shown that a small discontinuity such as
an enlargement or a hole on circular waveguides can produce
trapped electromagnetic modes with frequencies dightly below
the waveguide cutoff. The trapped modes due to multiple dis-
continuities can lead to high narrow-band contributions to the
beam-chamber coupling impedance, especially when the wall
conductivity is high enough. To make more reliable estimates
of these contributionsfor real machines, an analytical theory of
the trapped modes is developed in this paper for a generd case
of the vacuum chamber with an arbitrary single-connected cross
section. The resonant frequencies and coupling impedances due
to trapped modes are cal culated, and simple explicit expressions
are given for circular and rectangular cross sections. The esti-
mates for the LHC are presented.

[. Introduction

Previous computer studies of cavities coupled to a beam pipe
indicated that theimpedance of small chamber enlargements ex-
hibits sharp narrow peaks at frequencies close to the cutoff fre-
guencies of the waveguide, see references in [1]. For a sin-
gle small discontinuity, such as an enlargement or a hole, on a
smooth circular waveguide, an analytical theory has been de-
veloped [1], which shows that these peaks can be attributed to
trapped modes localized near the discontinuity. A trapped mode
is an eigenmode of the waveguide with a discontinuity, with
the eigenfrequency dlightly below the waveguide cutoff, which
can exist in addition to the continuous spectrum of the smooth
waveguide. The existence of trapped modes depends on arela-
tion between the conductivity of the chamber walls and atypical
size of the discontinuity, and inthelimit of perfectly conducting
wallsthe trapped modes exist even for very small perturbations.

The trapped modes in a circular waveguide with many dis-
continuitieshave a so been studied [2], and it was demonstrated
that the resonance impedance due to NV close discontinuitiesin
the extreme case can be as large as N? times that for a single
discontinuity. This phenomenon is dangerous for the beam sta-
bility in large superconducting proton colliders like the LHC,
where the design anticipates a thermal screen (liner) with many
small pumping holes inside the beam pipe. In such structures
withmany small discontinuitiesand ahighwall conductivity, the
trapped modes can exist and contributesignificantly to thebeam-
chamber coupling impedances.

In the present paper we develop an analytical description of
the trapped modes for a waveguide with an arbitrary single-
connected cross section. Weal so derive particular resultsfor cir-

cular and rectangular waveguides from our general formulas.

I1. General Analysis

Let us consider a cylindrica waveguide with a transverse
cross section .S, having asmall holein its perfectly conducting
walls. We assumethat the z axisisdirected a ong thewaveguide
axis, theholeislocated at thepoint (I;, z = 0),anditstypical size
h satisfies h < b. The fields of a source with time dependence
exp(—iwt) inthe waveguide without hole can be expressed asa
seriesin TM- and TE-modes. Thefields of the TM,,,,, mode are

(3]

EF = k2 enmexp(xlnm2) ; HF =0;
E;F = 4Ty Venm exp(£lnm2) ; Q)
Zoﬁ;’: = dkzx 667”” exp(£lpmz) ,

where + indicates the direction of the mode propagation, k2.,
enm(F) are egenvalues and orthonormalized eigenfunctions
(EFs) of the 2D boundary problemin S:
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and propagationfactorsT',,,,, = (k2,,—k*)'/? areto be replaced
by —ifnm With B = (k2 — k2 /2 fork > k. Here V
isthe 2D gradient in plane S; ¥ = w/¢; ¥ means an outward
normal unit vector, 7 isaunit vector tangent to the boundary 9.5
of the chamber cross section S, and {#, 7, 2} formaRHS basis.
Similarly, TE,,, fields are expressed in terms of EFs h,,,,, sat-
isfying the boundary problem (2) with the Neumann boundary
condition V, h,m|es = 0, and corresponding eigenvalues /2.,

[3].
A. Frequency Shifts

In the presence of the hole, there is a solution of the homo-
geneous, i.e., without externa currents, Maxwell equations for
this structure with the frequency Q; (s = {nm}) slightly below
the corresponding cutoff frequency w; = kse, sothat Aw; =
ws—Q; < ws —thesthtrapped TM-mode. Atdistances|z| > b
from the discontinuity the fields of the trapped mode have the
form

g, = k’?@s exp(—rs|z|) ; H.=0;
& = son(z)l Ve, exp(—Ts|2)) ; (3)
Zoﬁt = kz x 665 CXP(_F5|Z|) )

where k = €2;/¢, and the propagation constant I'; satisfies the
equation
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Here ¢, isthetransverse magnetic susceptibility of the hole, cf.
[4], and superscript’ A’ indicatesthat thefieldistaken at thehole.
Typicaly, 1, = O(h®), whileV,e = O(1/b), and as aresult,
I'sb <« 1. Thismeansthat the field of the trapped mode extends
in the waveguide over the distance 1/T'; large compared to the
waveguide transverse dimension. Conditionslike Eq. (4) were
obtained in [1], [2] for a circular waveguide using the Lorentz
reciprocity theorem, but there are other waysto derivethem. For
example, they follow in anatural way from a genera theory for
the impedances of small discontinuities [4]. In such a deriva
tion, the physi cal mechanism of thisphenomenon becomesclear:
a tangentia magnetic field induces a magnetic moment on the
hole, and the induced magnetic moment support thisfield if the
resonance condition (4) is satisfied. Thus, the mode can exist
even without an external source, see in [4]. Note that the in-
duced electric moment P, isnegligiblefor the TM-mode, since
P, = O(Ts)M,, asfollowsfrom Eq. (3).

The equation (4) givesthe frequency shift Aw; of thetrapped
sth TM-mode down from its cutoff

Aw;, N 1
ws  32k2

U2 (Vo) (5)
In the case of a small hole this frequency shift is very small,
and for the trapped mode (3) to exist, the width of the resonance
should be smaller than Aw,. Contributionsto the width come
from energy dissipation in the waveguide wall due to its finite
conductivity, and from energy radiation inside the waveguide
and outside, through the hole. Radiation escaping through the
holeiseasy to estimate[1], and for athick wall it isexponentially
small, eg., [5]. The damping rate due to afinite conductivity is
¥ = P/(2W), where P isthe time-averaged power dissipation
and I/ isthetotal field energy inthetrapped mode, which yields

Vs 6

2
o = m dl (Vl,es) ;

(6)

where J is the skin-depth at frequency €2, and the integration
is aong the boundary 0.5. The evaluation of the radiation into
thelower waveguide modes propagatingin the chamber at given
frequency €2, isalso straightforward [6], if one makes use of the
coefficients of mode excitation by effective dipoleson the hole,
e.g., Egs. (6)-(9) in Ref. [4]. It shows that corresponding damp-
ing rate yr = O(y?) issmall compared to Aw,. For instance,
if thereis only one TE, -mode with the frequency below that for
the lowest TM;-mode, like in a circular waveguide (H;; has a
lower cutoff than Eg,),

YR 1/)7'61/;
Aw, kz’)z

(Voh2)" (7)
where 3 ~ (k? — k?)'/? because k =~ k,.

The frequency of the trapped TE,-mode is given by the con-
dition[4]

1 2 2
O 2 [k ) = (V)] ®
provided the RHS of Eq. (8) is positive. Here ¢, and x are the
longitudinal magnetic susceptibility and the el ectric pol arizabil -
ity of the hole.

B. Impedance

The trapped mode (3) gives a resonance contribution to the
longitudinal coupling impedance at w ~ €

2iQvs R

Zs((.d) = (.02 _ (Qs _ i75)2 )

©)
where the shunt impedance R; can be calculated as

od |f dzexp(—iQsz/c)Sz(z)|2
fSw ds|H . |?

(10)

s =

Theintegral in the denominator istaken over theinner wall sur-
face, and we assume here that the power losses due to itsfinite
conductivity dominate. Integrating in the numerator one should
include all TM-modes generated by the effective magnetic mo-
ment on the hole using Egs. (6)-(9) from [4], in spite of alarge
amplitudeof only thetrapped TM; mode. Whileall other ampli-
tudes are suppressed by factor I';6 < 1, their contributionsare
comparable to that from TM;, because thisintegration produces
thefactor I',b for any TM, mode. Theintegral in the denomina-
tor is dominated by TM;. Performing calculationsyields
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whereé, = — 3, €,(0)V, e, (b)/k? is the normalized electric
field produced at the hole location by a filament charge on the
chamber axis, see[7] and [4].

Results for a particular shape of the chamber cross section
are obtained from the equations above by substituting the cor-
responding eigenfunctions.

[11. Circular Chamber

For acircular cross section of radiusb the eigenvalues k,,,,, =
Hnm /b, Where i, ., ismthroot of theBessel function J,, (z), and
T (kpmr) {

the normalized EFs are
e ol

with NE = b, J2 1 (1nm) /2, Whereep = 2 and e, = 1 for
n # 0. For TE-modes, k/,,,, = ph,, /b with J) (p,,) = 0, and

COS N
sin ne

€nm (7“, 30) = (12)

(k) [ cosmg
hom (7, @) = “UNI | sinng [ (13)
where N2 = 7b%¢, (1 — n? /2 )J2(1h,) /2. Inthis case

€, = 1/(2=b), which follows from the Gauss law. Assuming
theholelocated at ¢ = 0, we get from Eq. (4)

1/)'rﬂ2
| nm- 14
2me, b (14)
and from Eq. (11)
7 3,3
an — 01/)7'/'an (15)
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For TE-modes from Eq. (8)

[P ﬂfm

I’ .
2reab (1, — 1)

nm —

(16)

Notethat only the modes with cos n¢ can be trapped, whilesin-
modes just do not “see” the hole.

The results of this section coincide with those of [1], [2], ex-
cept R, in[1], where the contribution of only the trapped mode
to Eq. (10) was taken into account. Formulas for an axisymmet-
ric enlargement with area A of thelongitudinal cross section are
easily obtained from Egs. (14)-(15) with n = 0 by substitution
Y, — 4mbA.

IV. Rectangular Chamber
For a rectangular chamber of width a and height b the eigen-

vaues k,,, = m/n?/a? + m?/b? forn,m = 1,2, ..., and the
normalized EFs are
. e . Tmy
enm(,y) = ——sin —— sin , 17
(z,y) T ; (17)

with) <z <aand0 < y < b. Let aholebelocated inthe side
wal a » = a, y = y,. Then Eq. (4) gives
B 1/)7_71_2712

.o (TIYh
o = S (2

and from Eq. (11) theimpedance is

(18)

Zo2m3ni/n2b2 + m2a® _, ra yn\ . 4 (TMYL
nm — ~ b 7 T
R 25a*? (n2b3 + m2a®) (b b ) = ( b )
(19)
where
oQ _ I
S, v) = Z (—=1) sin[m (20 + 1)v] (20)

cosh[m (20 + 1)u/2]

isafast converging series; seepicturesin[7]. Boththefrequency
shift and especially the impedance decrease very fast if the hole
isdisplaced closer to the corners of the chamber, i.e. wheny;, —
bory, — 0.

V. Estimates

In a vacuum chamber with many discontinuitiestheir mutual
interaction is very important. For trapped modes in a circular
pipe thisinteraction was studied in [2], but the results are appli-
cable for any cross section of the chamber. A few holesin one
cross section work as asingle combined discontinuity. If theav-
erage distance g between adjacent cross sections with holes is
shorter than 1/T';, the number of the cross sections with holes
which work as an effective combined discontinuity is Ny, =
v/2/(Tsg). Referring to [2] for more detail, in this case we use
the following estimate for the reduced impedance of acyclic ac-
celerator dueto the trapped modes

A 4
Re — = T

= ———R~H;,
n Fskng

(21)
where ', k, and R, are given by the formulas above.

For the LHC liner we consider amodel having a square cross
section with side a = 36 mm. The liner wall has thickness

t = 1 mm and the inner copper coating. There are 666 narrow
longitudinal slotswithwidth s = 1.5 mm and length s = 6 mm
per meter of the liner, with A/ = 8 dlotsin one cross section,
which makes spacing g = 12 mm. The dotsare located at dis-
tance a/4 from corners. Using v, = w?s/x for along dotin
the thick wall [8], we get for the lowest E-mode (TM;,) near
5.9 GHz

Re z = 9.2V RRR Ohms, (22
n

where RRR = 30 — 100 for copper. The estimate for the
model with the circular cross section of radiusb = 18 mm was
16.5v RRR Ohms|[2]. These estimates presume identical slots.
A distribution of dot areas/lengths reduces Re Z/n signifi-
cantly: eg., for the Gaussian distributionwithRMSc 4 /A4y =
0.1, theaboveresult 16.5v/ RRR Ohmsturnsinto 7 Ohms, inde-
pendent of RRR, see[2].

V1. Conclusions

The trapped modes in waveguides with an arbitrary single-
connected cross section are considered. Theformulasfor thefre-
guency shift and the resonance impedance are derived in agen-
eral case, and the results for circular and rectangular chambers
aregiven.

The transverse coupling impedance due to trapped modes is
calculated inasimilar way, seeformulasfor the case of acircul ar
chamber in [2].
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