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I. High Energy Cosmic Particlesand Fields

In very strong electromagnetic fields, near to the magnetic
poles of a neutron star, for example, where the magnetic field
strength may well exceed 102G, and thus the corresponding
mass equivalent of field energy be higher than 200 g cm™3,
mechanisms can evolve, that are interesting for anumber of rea-
sons:

# Something may be learnt about electromagnetism at ex-
tremely high energy densities,

# Astrophysicistswant to understand the structure and dynam-
ics of pulsar magnetospheres in terms of underlying physics,

# Rotating cosmic magnets, rotation-powered radio pulsars,
for example, are possible candidatesfor high energy cosmic par-
ticle accelerators [1],

# The physicsat work may be hel pful for the designing of new
types of man-made accelerators.

The present paper is directed to a better understanding of the
classical equation of motion for particlesin very strong electro-
magnetic fields at its possible rdle in the generation of gamma
ray bursts and in the formation of plasmajets.

I1. Self-Consistent Electrodynamics

According to the conventional interpretation of Maxwell the-
ory, electromagnetic radiation is’generated’ through shear ac-
celeration of an electromagnetically interacting particle, irre-
spective of the nature of accelerating forces.

Consequently, Larmor’s radiation formula

pRAD _ mro(deRS/dt)2 = m7'0||dg/d7'||2 (1)
then contains the (four-) vector of 'kinematical’ acceleration,
du/dr. dvyrprs/dt isthe corresponding (three-) vector in the
momentary rest frame, MRS, of that particle. m isits mass and
0 = 2¢?/3mc? istheradiation constant.
Alsoinagreement withthisinterpretation, the equation of mo-
tion
du;/dr = UOF]%XTuk + 170G jpu”, (2
contains a radiation force tensor
L-D
G = ij
= ([dzuj/drz]uk - uj[dzu/zc/drz])/c2 (3)
*Paper delivered to the Particle Accelerator Conference, May, 1-5, 1995, Dal-

las, Texas. Due to the shortage of space, numerical and graphical results shown
at the conferencewill be reproduced elsewhere.

which is governed by (this time the second) kinemat-
ical acceleration'. FEXT isthe tensor of the external field” in
an arbitrary inertial frame of reference (1S) and 7o = ¢/me. If
acceleration is due to externa electromagnetic fields, Larmor’s
radiation formula (1) specializesto

PRAD (4)
where u]L = nokaXTu’“ is used as an abbreviation for the
’Lorentz acceleration’. EZAL isthe eectric field vector of the
external field, inthe MRS.

Accordingly, the radiation force tensor (3) speciaizesto

= m7y(enoEiys)* = mrol|u”|l?,

G = G = 0 FXT + G, (5)
with

Gl = (b — )/ ©
and u]LL = ngFﬁXTFEXT%, as an abbreviation for the'sec-
ond Lorentz acceleration’.

Inwhat follows| shall, tentatively, suggest that (1) radiationis
generated and radiation reaction may be felt only if and insofar
asaccelerationisdueto external electromagnetic fields[2], [5],
[6].

As aconseguence of thissuggestion, (4) is expected to be the
correct form of Lamor’sradiation formula, (at |east in thelowest
order of the interaction constant) and (5) is expected to be the
correct form of the radiation force tensor.

When the external field is a wave field, radiation from a
charged particle is often looked upon as the scattered wave
field ("synchro-Comptonradiation’) and thefourth-order compo-
nent of radiation reaction forcein thisspecial caseis seen asthe
knock-on force due to many-photon Thomson- ( or Compton- )
scattering?,

KTMRS = (UT/C)S%%’ (7
where o7 = 8me*/3m?c* isthe Thomson cross-section and S
isthe Poynting vector.

Hereit will be shown how thisinterpretation can be extended
also to electromagnetic fields of arbitrary shape, namely that (I1)

I Equation (2) with (3) sometimesis called Lorentz-Dirac equation (L-D equa-
tion) or Abraham-L orentz equation. Equation (2) with (5) sometimesisreferred
toasLorentz-Dirac-Landauequation(L-D-L equation). A reviewisgivenin:[3].

2The external field is understood as the field dueto all other electromagneti-
cally interacting particles around.

3 As one might expect, (6) can be deduced from (7) by Lorentz transforma-
tion [4].



radiation emitted from an electromagnetically interacting parti-
clein general can be understood as the result of the scattering
of an external electromagnetic field.

Suggestions(l) and (11) will beintegratedin a Schrodinger pic-
ture of the photon and referred to as self-consistent electrody-
namics.

[1l. Wave Mechanics of the Photon
In Maxwell’s equations

[V.E] = —(1/¢)0:H — (47/¢)j™,
[V,H] = (1/¢)3:E+ (47/c)j'®,
(V’E) = 47TQ(e)a

(V’H) = 47T9(m)a

the electromagnetic field is represented by the el ectric and mag-
netic vectors E and H, respectively. j(¢) and j(™) are thedectric
and magnetic current vectors, and o(¢) and ¢(") are the dectric
and magnetic charge densities, respectively.
As is well known, these classical field equations may be
written®
ihdp = Htoy — 4mihd, (8)

where (V,¢) = 4. ¢ := C(E + iH) isthewave function
of the photon and ' = C*(ET — 7H”) isits adjoint. Cor-
respondingly, the source terms® are defined through the electric
and magnetic charges 7 = C'{o(®) 4 (")} and the respective
currents ¢ = C'{j(® 4 4§}, respectively®. s := ((s3) ) ==
—ih(exu) isthespinand p := ((px),,) = —th((Ox)duw ) is
the momentum of the photon. H* := (c¢/k)(s, p).
In asource-free region, Schrodingers'sequationsis

ihdph = HT . (9)
Alternatively, one might have written

ihOpp = H ™) (10)
with thewave functiony := C*(E — iH) and itsadjoint ¢! :=
C(ET 4+ +HT). Then, X~ := —(¢/h)(s, p)-

Only waves corresponding to positive energy £ of the photon
have a physica counterpart in classical electromagnetic fields’

4For example, in: A. Messiah, Quantum Mechanics, Vol.l & 11, North Hollan-
dish Publ.Comp. (1970).

5Magneticchargesand currentsare admitted for reasonsof symmetry, but their
appearanceis not essential in the following argumentations. Brackets[,] are for
the vector product, (,) for the scalar product. In what follows, Latin indices are
running from 0 through 3, Greek indices are running from 1 through 3. 7 stands
for transposition and * for complex conjugate.  will be used for the Hamilto-
nian to distinguish it from the magnetic vector H. Also, £ will be used for the
energy of aphoton to distinguish it from the energy density of the electromag-
neticfielde. ¢, arethe Levi-Civitasymbols.

6With this definition of +/ through E and H we have not given privilegeto any
of thesetwo field vectorsE or H since the norm of the wave function, aswell as
expectation values are numerically invariant, and the field equations are form-
invariant under the transformationy — ' = ¢*@¢, sothaa E — E’' =
Ecosa — Hsina,andH — H’ = Esin o + H cos o, (with corresponding
transformationrulesfor thesourceterms). Moreover, theseinvariancesal so exist
under unitary transformations, ¢ — ' = A+, with A € U(3), from where
it looks'natural’ that the corresponding irreducible representations’ appear’ as
"elementary entities' which take part in electromagnetic interaction.

71n addition, one has to consider wave functionswhich are independent from
the coordinatesin spaceand time, in the normalizationvolume. They correspond
to the limit of vanishing photon energy, £ — 0.

and thus need to be selected from the solutions of (9) and (10).
Among these, theoneswith positivesense of rotation of the el ec-
tric vector with respect to the direction of propagation (i.e. left-
circularly polarized waves in the usual notation, corresponding
to positive helicity of the photon) are delivered by (9), while
those with negative sense of rotation (i.e. right-circularly po-
larized waves, corresponding to negative helicity) are described
by (10).

Here, it will be more comfortable, to make use of a one-to-
one correspondence of solutionsfrom (9) and (10), restrictingto
solutions of (9)

thoy = HAp, (12)

whereH := (¢/h)x (s, p), and y distinguishesbetween states of
positive and negative helicity.

V. Normalization and Statistical Interpretation

The quantum Schrodinger picture can be related to the classi-
cal Maxwell picturethrough astatistical interpretation. Multipli-
cation of the Schrodinger equation (9) with ! and of the adjoint
equation with v after substraction delivers,

Ouwy, + Ow = q, (12)
where w(x,t) = ¢Ty = (¢*,¢), and w(x,t) = (w,) =
—ic[y*, ], and® q := —87wRe(¢*, (), where Re( ) stands for
thereal part.

If the wave packet of the particle constituting the eectric
charge does not grow too fast within time interval s considered,
w isquasi-source free. Inthat case, normalization

/ Uiy Px =1 (13)
\4
is possible with the help of
(14)

IclP=1/ /{E2 + H*}d’x,
\4

where V. C Ra(x) is an appropriately chosen normalization
volume in 3-dimensional coordinate space’. Then, w is inter-
pretable as the position probability density of the photonand w,,
as the corresponding position probability current and the expec-
tation value for energy, e.g., is

<H>= / VIHvdPx.

v

(15)

Multiplying (9) with ¢ ¢, and subtraction of the complex
conjugate delivers

OvWpy + 0wy = qu, (16)

where Wuy = (¢*a¢)6uu - (1/):;1/)1/ + 1/);1/);1) and'” Qu =

8Correspondingto ¢ = —87|C2{(E,j(¥) + (H,j("™))}.

9 Singularities from point-like sources can be avoided by taking into account
the finite extension of the wave packet of the corresponding physical particle.

10Corresponding to q,, = 87¢|C[2{E 0l + H,0(™)}



Since, in a source-free region, each component of w =
(¢/h)Tsy obeys the continuity equation (16), w may also be
interpreted as adensity, in thiscase, of ¢ := (¢/h)s.

For an interpretation of the conserved quantity ¢, we notethat
with (11) the only possible eigenvalue of ¢ = (¢/h)s is +c.
Thus, ¢, may be understood as the velocity operator of the pho-
ton with ¢,c, = ¢?. w can be seen as the velocity density and
w .., @ the corresponding velocity current.

We thus arrive a the classical continuity equation 0, Sﬁ* +
Oe# = 0 for thedensity ¢# := N < H > w, and the cur-
rent S¥ := N < H > w,,, of expected energy, and at the clas-
sical continuity equation 8, %, + &; P# = 0, for the density
P# =N < H > w,/c,andthecurrent 0%, := N < H >
w .,/ ¢, Of expected momentum, where N istheratio of classical
field energy inthe normalization volumetothe expectation value
of photon energy.

V. Reproduction of the Equation of Motion

We now havethe meansto reinterpret radiation generation and
radiation reaction within a field of arbitrary shape in terms of
many photon Thomson scattering.

If,inthe MRS, O(V") isthe surface separating a (sufficiently
small spherical) scattering volume V' C V from V\ 1/, thenthe
rate of expected momentum transfer onto the charged particleis

[(MRSMI_ f O':i,dzOl,.
o)

(17)

Through arguments anal ogous to those applied earlier [2], [5],
[6], contributionsfrom the external field and from the Coulomb
field deliver the Lorentz (Coulomb) force

KLOR EEXT

MRs = ¢Ep RS (18)

and transformation of (18) fromthe MRSto an arbitrary | Sleads
to the covariant form of the Lorentz force

KjLOR = mnoF]%XTuk, (29

while contributions from the radiation field and from the
Coulomb field reproduce the radiation reaction force

Kiiis (1) = rodKirgs (1) /dt. (20)
Transformation of (20) analogously leadsto
KfAD = mTonkXTuk, (21)

and thereby back to the classical equation of motion (2) with (5).

V1. A Possible Mechanism for the Formation of Jets
and the Generation of Gamma Ray Bursts by
Rotating, Magnetized Neutron Stars
Near the surface of a rotating, magnetized neutron star, the
magnetic field may be extremely strong[7], typically of theorder
of 102, and aso the electric field may be very strong, though

considerably less, typicaly of the order of 10°G. Under such
conditions particlestend to follow magnetic field linesand, as |

have suggested earlier [6], [5], an upper limit of particle energy
is created locally by radiation reaction.

Inthe polar region, 8 = 0, of an orthogonal rotator, thislimit
ismax(y°rthe) 2 2.4 . 10° for the electron, and max(°rthe) =
3.6 - 10° for the proton'*.

For aparalld rotator,

max(174%) = 24/rp feTo -

N cos?8g(3cos?0p+1)
(14cos?6q) .

() ctgb (22)
rT
In the polar region, # = 0, of aparalld rotator, the upper limit
of the Lorentz factor is max(yP*) = 2.9 - 10° ctg 6, for the
electron, and max(yP2) = 4.4 - 10° ctg 6, for the proton.
Unlike the orthogona rotator, the paralld rotator develops a
very narrow nozzle around the axis, § = 0, through which very
energetic particles can be gected from the surface. This mech-
anism may play a rble in both, the generation of gamma ray
bursts'? aswell as the formation of jets.
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1 Asin [8], numerical values given here are for the 'standard set of parame-
ters, e.g., for the radius of the neutron star: r v = 10°cm, for the light radius:
r;, = 4.8 - 10%c¢m, and for the 'typical radius’: ro = 2.4 - 10'3cm (elec-
trons) and r = 5.6 - 101 cm (protons), correspondingto v = 10 sec—! and
w=10°0Gem?® .

120ne may think of thin beams of very energetic particles from spinning neu-
tron stars distributed in the volume of the galactic halo, which randomly hit the
location of the observer. But, of course, one hasto keep in mind that this sugges-
tion is based on results from particle dynamics in vacuum fields ('stage one’).
As mentioned before, modifications of the fields are expected through plasma
effects.



