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I. High Energy Cosmic Particles and Fields

In very strong electromagnetic fields, near to the magnetic
poles of a neutron star, for example, where the magnetic field
strength may well exceed 1012G, and thus the corresponding
mass equivalent of field energy be higher than 200 g cm�3,
mechanisms can evolve, that are interesting for a number of rea-
sons:

# Something may be learnt about electromagnetism at ex-
tremely high energy densities,

# Astrophysicistswant to understand the structure and dynam-
ics of pulsar magnetospheres in terms of underlying physics,

# Rotating cosmic magnets, rotation-powered radio pulsars,
for example, are possible candidates for high energy cosmic par-
ticle accelerators [1],

# The physics at work may be helpful for the designing of new
types of man-made accelerators.

The present paper is directed to a better understanding of the
classical equation of motion for particles in very strong electro-
magnetic fields at its possible rôle in the generation of gamma
ray bursts and in the formation of plasma jets.

II. Self-Consistent Electrodynamics

According to the conventional interpretation of Maxwell the-
ory, electromagnetic radiation is ’generated’ through shear ac-
celeration of an electromagnetically interacting particle, irre-
spective of the nature of accelerating forces.

Consequently, Larmor’s radiation formula

PRAD
= m�0(dvMRS=dt)

2
= m�0kdu=d�k

2 (1)

then contains the (four-) vector of ’kinematical’ acceleration,
du=d� . dvMRS=dt is the corresponding (three-) vector in the
momentary rest frame, MRS, of that particle. m is its mass and
�0 = 2e2=3mc3 is the radiation constant.

Also in agreement with this interpretation, the equation of mo-
tion

duj=d� = �0F
EXT
jk uk + �0Gjku

k; (2)

contains a radiation force tensor

Gjk = GL�D
jk

:= ([d2uj=d�
2
]uk � uj[d

2uk=d�
2
])=c2 (3)

�Paper delivered to the Particle Accelerator Conference, May, 1-5, 1995, Dal-
las, Texas. Due to the shortage of space, numerical and graphical results shown
at the conference will be reproduced elsewhere.

which is governed by (this time the second) kinemat-
ical acceleration1. FEXTjk is the tensor of the external field2 in
an arbitrary inertial frame of reference (IS) and �0 = e=mc. If
acceleration is due to external electromagnetic fields, Larmor’s
radiation formula (1) specializes to

PRAD
= m�0(c�0E

EXT
MRS)

2
= m�0ku

Lk2; (4)

where uLj := �0F
EXT
jk uk is used as an abbreviation for the

’Lorentz acceleration’. EEXTMRS is the electric field vector of the
external field, in the MRS.

Accordingly, the radiation force tensor (3) specializes to

Gjk = GEXT
jk := �0u

l@lF
EXT
jk +GT

jk; (5)

with
GT
jk := (uLLj uk � uju

LL
k )=c2 (6)

and uLLj := �20F
EXT
jk FEXTklul as an abbreviation for the ’sec-

ond Lorentz acceleration’.
In what follows I shall, tentatively, suggest that (I) radiation is

generated and radiation reaction may be felt only if and insofar
as acceleration is due to external electromagnetic fields [2], [5],
[6].

As a consequence of this suggestion, (4) is expected to be the
correct form of Lamor’s radiation formula, (at least in the lowest
order of the interaction constant) and (5) is expected to be the
correct form of the radiation force tensor.

When the external field is a wave field, radiation from a
charged particle is often looked upon as the scattered wave
field (’synchro-Comptonradiation’) and the fourth-ordercompo-
nent of radiation reaction force in this special case is seen as the
knock-on force due to many-photon Thomson- ( or Compton- )
scattering3,

KT
MRS = (�T =c)SEXTMRS; (7)

where �T = 8�e4=3m2c4 is the Thomson cross-section and S
is the Poynting vector.

Here it will be shown how this interpretation can be extended
also to electromagnetic fields of arbitrary shape, namely that (II)

1Equation (2) with (3) sometimes is called Lorentz-Dirac equation (L-D equa-
tion) or Abraham-Lorentz equation. Equation (2) with (5) sometimes is referred
to as Lorentz-Dirac-Landauequation (L-D-L equation). A review is given in: [3].
2The external field is understood as the field due to all other electromagneti-

cally interacting particles around.
3As one might expect, (6) can be deduced from (7) by Lorentz transforma-

tion [4].



radiation emitted from an electromagnetically interacting parti-
cle in general can be understood as the result of the scattering
of an external electromagnetic field.

Suggestions (I) and (II) will be integrated in a Schrödinger pic-
ture of the photon and referred to as self-consistent electrody-
namics.

III. Wave Mechanics of the Photon
In Maxwell’s equations

[r;E] = �(1=c)@tH� (4�=c)j(m);

[r;H] = (1=c)@tE+ (4�=c)j(e);

(r;E) = 4�%(e);

(r;H) = 4�%(m);

the electromagnetic field is represented by the electric and mag-
netic vectors E and H, respectively. j(e) and j(m) are the electric
and magnetic current vectors, and %(e) and %(m) are the electric
and magnetic charge densities, respectively.

As is well known, these classical field equations may be
written4

i�h@t = H+ � 4�i�h�; (8)

where (r;  ) = 4��.  := C(E + iH) is the wave function
of the photon and  y = C�(ET � iHT ) is its adjoint. Cor-
respondingly, the source terms5 are defined through the electric
and magnetic charges � = Cf%(e) + i%(m)g and the respective
currents � = Cfj(e) + ij(m)g, respectively6. s := ((s�)��) :=

�i�h("���) is the spin and p := ((p�)��) := �i�h((@�)��� ) is
the momentum of the photon. H+ := (c=�h)(s;p).

In a source-free region, Schrödingers’s equations is

i�h@t = H+ : (9)

Alternatively, one might have written

i�h@t � = H� � (10)

with the wave function � := C�(E� iH) and its adjoint � y :=
C(ET + iHT

). Then, H�
:= �(c=�h)(s;p).

Only waves corresponding to positive energy E of the photon
have a physical counterpart in classical electromagnetic fields7

4For example, in: A. Messiah, Quantum Mechanics, Vol.I & II, North Hollan-
dish Publ.Comp. (1970).
5Magnetic charges and currents are admitted for reasonsof symmetry, but their

appearance is not essential in the following argumentations. Brackets [,] are for
the vector product, (,) for the scalar product. In what follows, Latin indices are
running from 0 through 3, Greek indices are running from 1 through 3. T stands
for transposition and � for complex conjugate. H will be used for the Hamilto-
nian to distinguish it from the magnetic vector H. Also, E will be used for the
energy of a photon to distinguish it from the energy density of the electromag-
netic field ". "��� are the Levi-Civita symbols.
6With this definition of through E and H we have not given privilege to any

of these two field vectors E or H since the norm of the wave function, as well as
expectation values are numerically invariant, and the field equations are form-
invariant under the transformation  !  0 = ei� , so that E ! E0 =
E cos��H sin�, andH! H0 = E sin�+H cos�, (with corresponding
transformation rules for the source terms). Moreover, these invariancesalso exist
under unitary transformations,  !  0 = A  , with A 2 U(3), from where
it looks ’natural’ that the corresponding irreducible representations ’appear’ as
’elementary entities’ which take part in electromagnetic interaction.
7In addition, one has to consider wave functions which are independent from

the coordinates in space and time, in the normalization volume. They correspond
to the limit of vanishing photon energy, E ! 0.

and thus need to be selected from the solutions of (9) and (10).
Among these, the ones with positive sense of rotation of the elec-
tric vector with respect to the direction of propagation ( i.e. left-
circularly polarized waves in the usual notation, corresponding
to positive helicity of the photon) are delivered by (9), while
those with negative sense of rotation ( i.e. right-circularly po-
larized waves, corresponding to negative helicity) are described
by (10).

Here, it will be more comfortable, to make use of a one-to-
one correspondence of solutions from (9) and (10), restricting to
solutions of (9)

i�h@t = H ; (11)

whereH := (c=�h)�(s;p), and � distinguishes between states of
positive and negative helicity.

IV. Normalization and Statistical Interpretation
The quantum Schrödinger picture can be related to the classi-

cal Maxwell picture through a statistical interpretation. Multipli-
cation of the Schrödinger equation (9) with y and of the adjoint
equation with  after substraction delivers,

@�w� + @tw = q; (12)

where w(x; t) :=  y = ( �;  ), and w(x; t) = (w�) :=

�ic[ �;  ], and8 q := �8�Re( �; �), where Re( ) stands for
the real part.

If the wave packet of the particle constituting the electric
charge does not grow too fast within time intervals considered,
w is quasi-source free. In that case, normalization

Z

V

 y d3x = 1 (13)

is possible with the help of

jCj2 = 1=

Z

V

fE2
+H2gd3x; (14)

where V � R3(x) is an appropriately chosen normalization
volume in 3-dimensional coordinate space9. Then, w is inter-
pretable as the position probability density of the photon and w�

as the corresponding position probability current and the expec-
tation value for energy, e.g., is

<H>=

Z

V

 yH d3x: (15)

Multiplying (9) with  �%"�%� and subtraction of the complex
conjugate delivers

@�w�� + @tw� = q�; (16)

where w�� := ( �;  )��� � ( �� � +  �� �) and10 q� :=

Cf ��(r;  ) +  �(r;  �)g.

8Corresponding to q = �8�jCj2f(E; j(e)) + (H; j(m))g.
9Singularities from point-like sources can be avoided by taking into account

the finite extension of the wave packet of the corresponding physical particle.
10Corresponding to q� = 8�cjCj2fE�%(e) +H�%

(m)g



Since, in a source-free region, each component of w =

(c=�h) ys obeys the continuity equation (16), w may also be
interpreted as a density, in this case, of c := (c=�h)s.

For an interpretation of the conserved quantity c, we note that
with (11) the only possible eigenvalue of c = (c=�h)s is +c.
Thus, c� may be understood as the velocity operator of the pho-
ton with c�c� = c2. w can be seen as the velocity density and
w�� as the corresponding velocity current.

We thus arrive at the classical continuity equation @�S#� +

@t"
# = 0 for the density "# := N < H > w, and the cur-

rent S#� := N < H > w�, of expected energy, and at the clas-
sical continuity equation @��#�� + @tP

#
� = 0, for the density

P#
� := N < H > w�=c, and the current �#�� := N < H >

w��=c, of expected momentum, where N is the ratio of classical
field energy in the normalization volume to the expectation value
of photon energy.

V. Reproduction of the Equation of Motion
We now have the means to reinterpret radiation generation and

radiation reaction within a field of arbitrary shape in terms of
many photon Thomson scattering.

If, in the MRS, O(V 0
) is the surface separating a (sufficiently

small spherical) scattering volume V 0 � V from V nV 0, then the
rate of expected momentum transfer onto the charged particle is

KMRS� = �

I

O(V 0)

�#��d
2o� : (17)

Through arguments analogous to those applied earlier [2], [5],
[6], contributions from the external field and from the Coulomb
field deliver the Lorentz (Coulomb) force

KLOR
MRS = eEEXTMRS ; (18)

and transformation of (18) from the MRS to an arbitrary IS leads
to the covariant form of the Lorentz force

KLOR
j = m�0F

EXT
jk uk; (19)

while contributions from the radiation field and from the
Coulomb field reproduce the radiation reaction force

KRAD
MRS (t) = �0dK

LOR
MRS(t)=dt: (20)

Transformation of (20) analogously leads to

KRAD
j = m�0G

EXT
jk uk; (21)

and thereby back to the classical equation of motion (2) with (5).

VI. A Possible Mechanism for the Formation of Jets
and the Generation of Gamma Ray Bursts by

Rotating, Magnetized Neutron Stars
Near the surface of a rotating, magnetized neutron star, the

magnetic field may be extremely strong [7], typicallyof the order
of 1012G, and also the electric field may be very strong, though
considerably less, typically of the order of 1010G. Under such
conditions particles tend to follow magnetic field lines and, as I

have suggested earlier [6], [5], an upper limit of particle energy
is created locally by radiation reaction.

In the polar region, � = 0, of an orthogonal rotator, this limit
is max(ortho) �= 2:4 � 103 for the electron, and max(ortho) �=
3:6 � 105 for the proton11.

For a parallel rotator,

max(para) �= 2

p
rL=c�0 �

� (
rN

rT
) ctg�0

4
p

cos2�0(3cos2�0+1)

(1+cos2�0)
: (22)

In the polar region, � = 0, of a parallel rotator, the upper limit
of the Lorentz factor is max(para) �= 2:9 � 103 ctg �0 for the
electron, and max(para) �= 4:4 � 105 ctg �0 for the proton.

Unlike the orthogonal rotator, the parallel rotator develops a
very narrow nozzle around the axis, � = 0, through which very
energetic particles can be ejected from the surface. This mech-
anism may play a rôle in both, the generation of gamma ray
bursts12 as well as the formation of jets.
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