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Abstract

The emittance as the available phase space area is defined as
the product of the elementary cell area �
 and exp(S), where S
is the normalized entropy of a particle beam. The definition is
based on the fact that the factor exp(S) can be interpreted as the
number of the occupied cells. For particle beams, a closed ex-
pression for the emittance in terms of the phase space distribu-
tion function is obtained which is independent of �
. To com-
pute the emittance of the radiation beam, it is necessary to find
the eigenvalues of the correlation operator. An explicit solution
is found for the case of a partially coherent radiation beam which
is a stochastic superposition of coherent Gaussian beams with a
Gaussian probability distribution. Such a beam is a reasonable
model for undulator radiation by beam of electrons. From the
requirement that the radiation emittance reproduces the particle
beam emittance in the incoherent limit, the elementary cell area
�
 is determined unambiguously to be �, the radiation wave-
length. The emittance in the coherent limit then becomes �.

I. INTRODUCTION

The macrosopic state of a particle beam is specified by the dis-
tribution function in phase space. However, it is often useful to
have a global characterization of the beam quality by means of
a few numbers. The area of phase space occupied by the beam,
called the emittance, is a good representation of the beam qual-
ity as it gives a measure of the uncertainty in the state of a par-
ticle beam. It is furthermore invariant under linear beam trans-
port transformation. On the other hand, definition of emittance
has been rather arbitrary.

Let us first recall several definitions of emittance. Through-
out this paper, we will, for simplicity limit our discussion to
the phase space distribution in one transverse direction. Let the
probability distribution function in phase space be f(x; �), with
the normalization

R
f(x; �)dxd� = 1. Examples of the possible

emittance definitions are:
1. The geometric emittance, �F defined to be the area of the

phase space region containing a fraction F of the total par-
ticles.

2. The peak emittance, defined as �0 = 1=f(0; 0)
3. The rms emittance
�rms =

p
< x2 >< �2 > � < x� >2,

where quantities within the angular brackets are the average
values.

Each of the above definitions is suitable for certain phase
space distributions, but not for others; �F could depend sensi-
tively on the chosen value of the fraction F and could also be am-
biguous for a complicated distribution, �0 is suitable only for a
distribution with a well defined peak at the origin and no other
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places, and �rms is not suitable in for general non-Gaussian dis-
tributions. Also �F and �0 cannot be generalized to radiation
beams. Although �rms can be generalized to radiation beam, it
gives an infinity for the case of a coherent beam after an aperture.

This paper is an attempt to put the emittance concept on a
firmer theoretical basis by relating it to the entropy in statistical
mechanics. We define emittance as the product of the elemem-
tary cell area �
 and exp(S), where S is the normalized entropy
of a particle beam. The definition is reasonable because the fac-
tor exp(S) can be interpreted as the number of the occupied cells.
The approach provides a well defined, unified description of the
beam qualities for particle and radiation beams. Such a unified
understanding will be useful in describing the partially coher-
ent beams from electron beams travelling through undulators in
modern synchrotron radiation facilities.

Entropy as a measure of the quality of particle beam has been
suggested before[1]. Here we provide a quantitative connection
of the entropy to emittance for particle as well as radiation beam.

II. ENTROPY AND EMITTANCE
To compute the entropy of a particle beam, we divide the

phace space area occupied by the beam into a large number M
of elementary cells of an area �
. Let N be the total number of
prticles in the beam, nk is the number of the particles in the kth
cell, and pk = nk=N be the probability that a particle occupy the
kth cell. The number of ways in which the particles can be parti-
tioned into different cells to produce a given phase space distri-
bution is

P =
N !

n1!n2!:::nM!
: (1)

The entropy of the beam is given by lnP . The normalized en-
tropy, S, is obtained by dividing the entropy by N:

S � 1

N
lnP = �

MX
k=1

pk ln pk: (2)

In the above we are assuming that N and nk are large so that
Stirling’s formula is applicable.

The entropy has a well known meaning as a measure of the
disorder in statistical mechanics, or as the information capacity
in information theory. We will relate the entropy to emittance by
noting that the quantity expS can be interpreted as the number
of the occupied cells. To see this, we construct a uniform phase
space distribution associated with the original distribution such
that the entropies of the two distributionsare the same. The num-
ber of elementary cells in the associated distribution, denoted by
M , will be the number of the occupied cells in the orginal distri-
bution. The normalized entropy for the associated distribution is
lnM which by construction is equal to S. Thus we see, indeed,
that expS is the number of the occupied cells.

Based on these considerations, we write the emittance as fol-
lows:

� = �
expS: (3)



Equation(3) is the emittance definition based on statistical me-
chanics adopted in this paper. In the followingsections, the emit-
tance of particle and radiation beams are computed based on this
formula.

III. PARTICLE BEAMS
For a beam of non-interacting particles, the phase space distri-

bution function f(xe; �e) is a non-negative, physically measur-
able quantity. Here, and in the rest of the paper, the subscript e
is used to distinguish the particle (electron) variables from those
of radiation. We consider first the case where the distribution is
a smooth function so that for a sufficiently small value of �
,
Eq.(2) can be replaced by the following integral [1]:

S = �
Z

dxed�ef(xe; �e) ln (f(xe; �e)�
): (4)

The emittance from Eq.(3) becomes

� = exp

�
�
Z

dxed�ef(xe; �e) lnf(xe; �e)

�
(5)

Note that the emittance in this continuous limit is independent of
�
, as it should be. It is also important to observe that the emit-
tance defined by Eq.(5) is conserved for any Hamiltonian beam
transport system due to Liouville’s theorem.

For a uniform distribution occupying a phase space area 
,
Eq.(5) gives � = 
, as expected.

Consider a Gaussian distribution

f(xe; �e) =
1

2��xe��e
exp
�
� x2e
2�2xe

� �2e
2�2�e

�
; (6)

where �xe and ��e are respectively the rms widths of the particle
distribution in xe and �e. Equation(5) becomes in this case

� = e2��xe��e: (7)

The result is a factor e ' 2:72 larger than the peak emittance
1=f(0; 0).

In many practically important cases, the distribution could
have rapid variations within experimentally realizable phase
space resolution �
. The emittance in those cases should then
be defined as

� = exp

"
�
X
k

�
fk ln fk

#
; (8)

where fk is the average of the distribution in the kth cell element
of area �
. The emittance defined by this equation will in gen-
eral not be conserved even for a Hamiltonian system. For ex-
ample, a smooth distribution at the beginning of a beam trans-
port system can evolve into a highly filamented distribution due
to non-linear transport elements. The emittance as defined by
Eq.(8) will increase in such a case.

IV. RADIATION BEAM
For radiation beam, the phase space area and cells are abstract

quantities[2],[3]. In this case, we proceed by noting that the

probabilities pk are the eigenvalues of the normalized version
�̂N of the correlation operator �̂. This is similar to the case of
quantum statistical mechanics where the density operator plays
the role of the correlation operator. Equation(2) becomes, there-
fore

S = �Tr(�̂N ln �̂N ); (9)

To relate the quantities appearing in the above to the field
quantities, consider the frequency component E(x) at a given
frequency of the radiation field at a fixed longitudinal position
along the optical axis. Throughout this paper, we ignore polar-
ization and treat the field as a scalar. In general the field will be a
stochasic variable. The correlation function of the radiation field
is given by

�(x; x0) =


E(x)E(x0)�

�
: (10)

The angular brakets in the above imply taking the statistical av-
erage. In terms of Dirac bra-ket notation, the correlation opera-
tor and the correlation function are related by

�(x; x0) = hxj�̂jx0i: (11)

The normalized correlation matrix is given by

�N (x; x
0) =

�(x; x0)R
dx�(x; x)

: (12)

V. PARTIALLY COHERENT UNDULATOR
RADIATION

A. Model for Undulator Radiation

We now apply the above formalism to radiation generated by
a beam of electrons from an undulator. To permit analytical cal-
culation, the expression for the radiation field is simplified as fol-
lows[4]: The fundamental frequency component at! = !1 from
a single electron with a transverse coordinate xe from the cen-
ter of the undulator gap and with an angle �e with repesct to the
undulator axis entering the undulator at time te can be approxi-
mately represented as follows [4]:

E(x;xe; �e) =

�
I
0

�xr
p
2�

�
1=2

exp

�
� (x � xe)

2

4�2xr
+

i k1�e(x� xe)� i!1te]; (13)

where k1 = !1=c is the reference wave number, and where �xr
is a measure of the spread in thex-direction of the radiation pro-
duced by the single electron. The quantity I0 is a normaliza-
tion constant, defined by

R
jE(x)j2 dx = I0. Note that the field

E(x;xe; �e)is related to E(x; 0; 0) by translation of the phase
space coordinates. We define the Fourier transform of the radia-
tion field by

~E(�;xe; �e) =

Z
dxp
2�

E(x;xe; �e) exp(�i�k1x); (14)

so that

~E(�;xe; �e) =

 
I0

k1��r
p
2�

!
1=2

exp

"
� (�� �e)

2

4�2�r
�

ik1xe(�� �e)� i!1te]; (15)



where ��r is the width of the radiation field in the variable �.
The radiation widths �xr and ��r satisfy

�xr��r =
1

2k1
; (16)

so that the Gaussian beam of Eq.(13) is a minimum uncertainty
wave packet. For an undulator of length L, we have �xr =p
2�1L=4� and ��r =

p
�1=2L, where �1 = 2�=k1, the wave-

length corresponding to k1.
The total electric fieldE(x) is obtained by summing over con-

tributions from different electrons E(x;xe; �e).

B. Correlation and Entropy

In calculating the average in Eq.(10), terms involving product
of electric fields from different electrons vanish due to random
phase factors. The contributions from the same electron is aver-
aged with the electron probability distribution f(xe; �e). Thus,

�(x; x0) = Ne

Z
dxe d�e f(xe; �e)E(x;xe; �e)E(x0;xe; �e)

�

(17)
where Ne is the total number of electrons. Assuming that the
electron distribution is Gaussian as given by Eq.(6), the integrals
can be performed, and we obtain

�N (x; x
0) =

1

�x

p
2�

exp

"
� 1

2�2

x

�x+ x0

2

�
2

�
k2
0
�2

�(x� x0)2

2

#
; (18)

where
�2

x = �2xe + �2xr; (19)

�2

� = �2�e + �2�r: (20)

To compute the entropy we must carry out the trace in Eq.(9).
For this purpose it is convenient to have the eigenvalues pk of the
operator �̂N , i.e., the eigenvalues which appear in the equationZ

dx0 �N (x; x
0)�k(x

0) = pk�k(x); (21)

where�k(x) are the eigenfunctions. The eigenvalues pk are nec-
essarily non-negative, since �̂ is a non-negative definite operator.
In fact, pk can be identified as the probability to occupy the kth
cell introduced in Section II.

It turns out that the integral eigenvalue equation, Eq.(21), can
be solved by noting the similarity of the present problem with the
quantum statistical mechanics of harmonic oscillators[5]. With-
out going into the derivation [6], we give the result for the nor-
malized entropy for the partially coherent radiation beam as fol-
lows:

S =
1

2

�
(� + 1) ln

� + 1

2
� (� � 1) ln

� � 1

2

�
; (22)

where
� = 2k1�x�� � 1: (23)

C. Emittance of Partially Coherent Radiation Beam

The emittance is given by Eq.(3) with S determined from
Eq.(22). In contrast to the particle beam case, however, we need
to specify the value of the elementary cell area �
. We will prove
below the very reasonable result that �
 = �1, the wavelength of
the radiation. Indeed, we note that the radiation emittance should
approach the electron beam emittance when � � 1. In this in-
coherent limit, Eq.(23) becomes

S = ln � + 1 +O(1=�2): (24)

Therefore the emittance in the incoherent limit becomes

� = �
 (e�=2 +O(1=�)) ' �
ek1�xe��e: (25)

This becomes identical to Eq.(7) if, and only if, �
 = �1, as was
asserted.

In the limit of vanishing electron beam emittance, the radia-
tion emittance becomes �1, the elemental phase space area; The
radiation is completely coherent.

A measure of coherence of a partially coherent beam is the co-
herent fraction Fcoh, defined as the ratio of the coherent emit-
tance to the full emittance. We obtain Fcoh = exp(�S), with
S given by Eq.(22). In the past, the rms definition of emittance
was often used, in which case F rms

coh = 1=�. We have compared
Fcoh and F rms

coh as a function of � = �xe=�xr = ��e=��r, and
find that they do not differ much from each other.
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