ENTROPY AND EMITTANCE OF PARTICLE AND PHOTON BEAMS
K.-J. Kimand R.G. Littlgjohn, Lawrence Berkeley Laboratory, Berkeley, CA 94720 USA

Abstract

The emittance as the available phase space area is defined as
the product of the e ementary cell aread2 and exp(.S), where S
is the normalized entropy of a particle beam. The definitionis
based on thefact that thefactor exp(.S) can beinterpreted asthe
number of the occupied cells. For particle beams, a closed ex-
pression for the emittance in terms of the phase space distribu-
tion function is obtained which is independent of 4. To com-
pute the emittance of the radiation beam, it is necessary to find
the eigenva ues of the correlation operator. An explicit solution
isfound for the case of apartialy coherent radiation beam which
is a stochastic superposition of coherent Gaussian beams with a
Gaussian probability distribution. Such a beam is a reasonable
model for undulator radiation by beam of electrons. From the
requirement that the radiation emittance reproduces the particle
beam emittance in the incoherent limit, the elementary cell area
4€) is determined unambiguoudly to be A, the radiation wave-
length. The emittance in the coherent limit then becomes A.

I. INTRODUCTION

The macrosopic state of a particlebeam isspecified by thedis-
tribution function in phase space. However, it is often useful to
have a global characterization of the beam quality by means of
afew numbers. The area of phase space occupied by the beam,
called the emittance, is a good representation of the beam qual-
ity as it gives a measure of the uncertainty in the state of a par-
ticle beam. It isfurthermore invariant under linear beam trans-
port transformation. On the other hand, definition of emittance
has been rather arbitrary.

Let usfirst recall severa definitions of emittance. Through-
out this paper, we will, for simplicity limit our discussion to
the phase space distribution in one transverse direction. Let the
probability distributionfunctionin phase space be f(x, ¢), with
thenormalization | f(x, ¢)dzd¢ = 1. Examplesof thepossible
emittance definitions are:

1. The geometric emittance, ¢ defined to be the area of the
phase space region containing a fraction F of the total par-
ticles.

2. The peak emittance, defined ase; = 1/£(0,0)

3. Therms emittance
Erms = /< 22 >< 92 > — < xd >2,
where quantitieswithintheangul ar bracketsarethe average
values.

Each of the above definitions is suitable for certain phase
space distributions, but not for others; ¢ could depend sensi-
tively onthe chosen value of thefraction F and could also beam-
biguous for a complicated distribution, ¢, is suitable only for a
distribution with a well defined peak at the origin and no other
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places, and ¢,.,,,s isnot suitablein for genera non-Gaussian dis-
tributions. Also ¢ and ¢, cannot be generalized to radiation
beams. Although ¢,,,s can be generalized to radiation beam, it
givesaninfinity for the case of acoherent beam after an aperture.

This paper is an attempt to put the emittance concept on a
firmer theoretical basis by relating it to the entropy in statistical
mechanics. We define emittance as the product of the elemem-
tary cell area d$2 and exp(.S), where S isthe normalized entropy
of aparticlebeam. The definitionis reasonable because the fac-
torexp(S) canbeinterpreted asthenumber of theoccupied célls.
The approach providesawell defined, unified description of the
beam qualitiesfor particle and radiation beams. Such a unified
understanding will be useful in describing the partially coher-
ent beams from el ectron beams travelling through undulatorsin
modern synchrotron radiation facilities.

Entropy as ameasure of the quality of particle beam has been
suggested before[1]. Here we provide a quantitative connection
of theentropy to emittancefor particle aswell asradiation beam.

1. ENTROPY AND EMITTANCE

To compute the entropy of a particle beam, we divide the
phace space area occupied by the beam into alarge number A/
of elementary cells of an area Q2. Let N bethetotal number of
prticlesin the beam, n;, isthe number of the particlesin the kth
cdl, andp; = ng /N betheprobability that aparticle occupy the
kth cell. The number of waysinwhich the particles can be parti-
tioned into different cells to produce a given phase space distri-
butionis

P= N T (@D}

nylns!. iyl
The entropy of the beam is given by In P. The normalized en-
tropy, .S, is obtained by dividing the entropy by N:

S

1 M

NlnP:—Zpklnpk. 2
k=1

In the above we are assuming that NV and n; are large so that

Stirling’sformulais applicable.

The entropy has a well known meaning as a measure of the
disorder in statistical mechanics, or as the information capacity
ininformation theory. We will rel ate the entropy to emittance by
noting that the quantity exp S can be interpreted as the number
of the occupied cells. To see this, we construct a uniform phase
space distribution associated with the original distribution such
that theentropiesof thetwo distributionsarethesame. The num-
ber of elementary cellsin the associated distribution, denoted by
M, will be the number of the occupied cellsin theorginal distri-
bution. The normalized entropy for the associated distributionis
In M which by constructionis equal to S. Thus we see, indeed,
that exp S isthe number of the occupied cells.

Based on these considerations, we write the emittance as fol -
lows:

e =030QexpS. (3)



Equation(3) isthe emittance definition based on statistical me-
chanicsadopted inthispaper. Inthefollowingsections, theemit-
tance of particleand radiation beams are computed based on this
formula

I11. PARTICLE BEAMS

For abeam of non-interacting particles, the phase space distri-
bution function f (., ¢.) isanon-negative, physically measur-
able quantity. Here, and in the rest of the paper, the subscript e
is used to distinguishthe particle (el ectron) variables from those
of radiation. We consider first the case where the distributionis
a smooth function so that for a sufficiently small value of 62,
Eq.(2) can be replaced by the following integral [1]:

§=— / dreddef(ze, ) In (f(ze, )59). (&)

The emittance from Eq.(3) becomes

¢ = exp [— [tsdo.steoiso)| @
Notethat the emittancein thiscontinuouslimit isindependent of
4%, asit should be. It isalso important to observe that the emit-
tance defined by Eq.(5) is conserved for any Hamiltonian beam
transport system dueto Liouville' stheorem.

For a uniform distribution occupying a phase space area ¢,
Eq.(5) givese = €2, as expected.

Consider a Gaussian distribution

1 ( 2] ¢? )
exp s

- MO peOge _QUge B 2‘7;(3

f(xea¢e) (6)

where o, and o 4. arerespectively thermswidthsof the particle
distributionin =, and ¢.. Equation(5) becomes in this case

(")

The result is a factor e ~ 2.72 larger than the peak emittance
1/1(0,0).

In many practically important cases, the distribution could
have rapid variations within experimentally redizable phase
space resolution §€2. The emittance in those cases should then
be defined as

€= e2M0pc0ge.

€ = exp [—Zé@f_klnf_k] , (8)
k

where f;, istheaverage of thedistributionin thekth cell element
of area 2. The emittance defined by this equation will in gen-
eral not be conserved even for a Hamiltonian system. For ex-
ample, a smooth distribution at the beginning of a beam trans-
port system can evolve into a highly filamented distribution due
to non-linear transport elements. The emittance as defined by
Eq.(8) will increase in such a case.

V. RADIATION BEAM

For radiation beam, the phase space areaand cells are abstract
quantities[2],[3]. In this case, we proceed by noting that the

probabilities p;, are the eigenvaues of the normalized version
I'y of the correlation operator I'. Thisis similar to the case of
guantum statistical mechanics where the density operator plays
therole of the correlation operator. Equation(2) becomes, there-
fore

S=—-Tr(IyInTy), 9)

To relate the quantities appearing in the above to the field
quantities, consider the frequency component £ (x) at a given
frequency of the radiation field at a fixed longitudinal position
along the optical axis. Throughout this paper, we ignore polar-
ization and treat thefield asascalar. In general thefield will bea
stochasic variable. Thecorrelation function of theradiation field
isgiven by

[(z,2') = (E(z)E(2')"). (20)
The angular braketsin the above imply taking the statistical av-

erage. In terms of Dirac bra-ket notation, the correlation opera
tor and the correlation function are related by

[(z,2') = (2|T|2'). (11)

The normalized correlation matrix is given by

/

) = INE .
[dxT(z, )

V. PARTIALLY COHERENT UNDULATOR
RADIATION

A. Modd for Undulator Radiation

We now apply the above formalism to radiation generated by
abeam of electrons from an undulator. To permit anaytical cal-
culation, theexpressionfor theradiationfieldissimplified asfol-
lowg[4]: Thefundamental frequency component at w = w; from
a single electron with a transverse coordinate =, from the cen-
ter of the undulator gap and with an angle ¢, with repesct to the
undulator axis entering the undulator at time ¢, can be approxi-

mately represented as follows [4]:
1/2 . 2
) exp [_M+
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where k1 = wy/c isthereference wave number, and where o,
isameasure of the spread in the z-direction of the radiation pro-
duced by the single electron. The quantity 7, is a normaliza
tion constant, defined by [ |E(xz)|? dv = I,. Notethat the field
E(x;x., ¢.)isrelated to F(x;0,0) by trandation of the phase
space coordinates. We define the Fourier transform of the radia-
tionfield by

~ d
E(¢; 20, 6e) = %E(x;xe,qse)exp(—wklx), (14)
S0 that
[ 1/2 (qs ¢ )2
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ikize (¢ — ) — iwnt. ], (15)



where ¢4, isthewidth of the radiation field in the variable ¢.
The radiationwidths o, and o, satisfy

1

OgrOgr =
s0 that the Gaussian beam of Eq.(13) is a minimum uncertainty
wave packet. For an undulator of length ., we have o, =
V2 L/4rand oy, = /A1 /2L, where \; = 2rn/ky, thewave-
length corresponding to k; .

Thetotal electricfield () isobtained by summing over con-
tributionsfrom different electrons F(z; z., ¢.).

B. Correlation and Entropy

In calculating the average in Eq.(10), termsinvol ving product
of electric fields from different el ectrons vanish due to random
phase factors. The contributionsfrom the same electron isaver-
aged with the electron probability distribution f(z., ¢.). Thus,

F(l‘, l‘/) =N, / dz. do. f(xea ¢€)E(x; Le, ¢6)E(x/; Le, ¢e)*

(17)
where N, is the total number of electrons. Assuming that the
electron distributionis Gaussian as given by Eq.(6), theintegrals
can be performed, and we obtain

1
I'n(z,z') =
w( ) A2
1 je+a/\2 k§AL(z —2')?
P _2Ag( 2 ) N 2 - (19
where
AL =07 + oz, (19)
AL =05, 405, (20)

To compute the entropy we must carry out the trace in Eq.(9).
For thispurposeitis convenient to havetheeigenvaluesp;, of the
operator I'y, i.e, the eigenval ues which appesar in the equation

/ de' T (z, 2 ) (2') = pror(z), (21)
where ¢, (x) aretheeigenfunctions. Theeigenvaluesp;, are nec-
essarily non-negative, sincel’ isanon-negativedefiniteoperator.
Infact, p;, can beidentified as the probability to occupy the kth
cell introduced in Section |1.

It turnsout that theintegral eigenvalue equation, Eq.(21), can
be solved by noting the similarity of the present problemwiththe
guantum statistical mechanics of harmonic oscillatorg 5]. With-
out going into the derivation [6], we give the result for the nor-
malized entropy for the partially coherent radiation beam asfol-
lows:

1

S = (7]-1—1)11177;1—(77—1)111%

, (22)

N | —

where

n= 2k A A, > 1. (23)

C. Emittance of Partially Coherent Radiation Beam

The emittance is given by Eq.(3) with S determined from
Eq.(22). In contrast to the particle beam case, however, we need
to specify thevaueof theelementary cell aread 2. Wewill prove
below thevery reasonableresult that 52 = A4, thewavel ength of
theradiation. Indeed, we notethat theradiation emittance should
approach the electron beam emittance when n» > 1. In thisin-
coherent limit, Eq.(23) becomes

S=1Inn+14+0(1/n%). (24)
Therefore the emittance in the incoherent limit becomes
e=06Q(en/2+O0(1/n)) =~ 6Qeki0pe0 4. (25)

Thisbecomesidentical to Eq.(7) if, and only if, §2 = A, aswas
asserted.

In the limit of vanishing electron beam emittance, the radia
tion emittance becomes )1, the elemental phase space area; The
radiation is completely coherent.

A measure of coherence of apartially coherent beam isthe co-
herent fraction F.,;, defined as the ratio of the coherent emit-
tance to the full emittance. We obtain F,,, = exp(—5), with
S given by Eq.(22). In the past, the rms definition of emittance
was often used, inwhich case £777° = 1/5. We have compared
Feonp and FI72® asafunction of & = o,c /00 = 04e/0yr, and

coh

find that they do not differ much from each other.
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