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Abstract.
The method for calculation of the beam motion envelopes in
the six-dimensional phase space of charged particle moving in
a cyclic accelerator is proposed. It is based on the invariance of
the special quadratic form depending on the dynamic variables
relatively to the shift along the particle trajectory. The envelopes
are expressed as the explicit functions of the form coefficients.

1. Introduction

The classical problem for development of cyclic accelera-
tor of charged particles is the calculation of the envelopes of
the particle beam with respect to different dynamic variables
ul (θ), l = 1, ..., 6, which are the components of the state vec-
tor u(θ) of a charged particle in the point with fixed accelerator
azimuthθ. This problem is actual as before (see, for example
[1-3]). The envelopes determine the maximum possible values
of the respective dynamic variables in any pointθ of the accelera-
tor ring and therefore they determine various important physical
characteristics of the beam: transverse sizes, divergence and en-
ergy spread [4,5]. In the present communication we propose the
method for calculation of the envelopes in terms of the evolution
matrix elements.

2. Evolution matrix

In general case the components of the state vector may be
expressed by the set of the following values(x, ẋ, δ, η, z, ż) [4],
i.e. u1(θ) = x(θ), u2(θ) = ẋ, and so on. Herex, z are the par-
ticle deviations along the normal and the binormal to the closed
orbit respectively;δ = (E − Es)/Es, E is particle energy,Es

is the energy equilibrium value,η = (ϕ −ϕs) is phase deviation
from the equilibrium value;̇x, ż are the rates connected with the
coordinatesx, z respectively. The charged particle dynamics
in the cyclic accelerator in the one-particle approximation with
negligibly small random perturbations is described by the set of
linearized equations [4,5]

u̇(θ) = A(θ)u(θ), (1)

where the 6×6- matrixA(θ) = (Al ,m(θ)), l , m = 1, ..., 6 is the
periodic function with respect toθ and it has a definite structure
with the dependence onθ defined by the given accelerator design.
However, the concrete form of matrixA(θ) has no importance
for the below proposed method.

Determine the evolution matrixM(θ) for the above linear
system by the relationshipM(θ)u(0) = u(θ). This matrix is the

unique solution of the equation

Ṁ(θ) = A(θ)M(θ) (2)

with initial condition M(0) = 1. Since the dependenceA(θ)

is piecewise constant and it is periodic respective toθ [4,5],
then the matrixM(θ) can be always determined explicity on the
basis of quite tedious calculations for the specified accelerator
design. Further, the matrixM(θ) will be assumed known. To
determine the motion envelope with respect to theul - phase
coordinate it is necessary to calculate max[Mlk(θ)uk(0)] where
the maximum is determined by the exhaustion of all possible
initial datauk(0), k = 1, ..., 6, which the beam particles possess
at certain fixed initial moment. This calculation procedure is
very inconvenient and, therefore, it is preferable to obtain the
formulae for envelopes directly in terms of matrixM(θ). Such
formulae are known for the case of the independentx-oscillations
provided that the energy homogeneity takes place [6].

3. Invariant quadratic form

Introduce the matrixG(θ) = M(θ)M(θ)+ (+ denotes the
matrix transposition), which according to Eq.(2) satisfies to the
equation

Ġ(θ) = A(θ)G(θ) + G(θ)A(θ)+ (3)

and to G(0) = 1. The matrix M(θ) is reversible because
d(ln detM(θ))/dθ = Spd(ln M(θ))/dθ = SpM−1(θ)M(θ) =
SpA(θ) and hence

detM(θ) = exp{
∫ θ

0
SpA(θ)dτ } 6= 0

Then the matrixG(θ) is reversible and it may be possible to
introduce the quadratic formI (θ) depending on the state vector
u(θ)

I (θ) = (u(θ), G−1(θ)u(θ)). (4)

Using the differentiation formula dG−1(θ) /dθ =
−G−1(θ)Ġ(θ)G−1(θ)and Eqs.(1),(3), we find that valueI (θ) =
I0 is a formal invariant relative to shift along the trajectory. So,
the particle moves on the six-dimensional surface the shape and
the location of which in the six-dimensional phase space are reg-
ulated by matrixG−1(θ) and therefore it is changed withθ. The
surface is formed by the trajectories with the initial vectorsu(0)

which give the same value of the invariant,I0 = (u(0),u(0)).

Since the surface under consideration is the sphere at timeθ = 0,

then it is closed and simply connected at any time moment.



          

Moreover, since the surface with lesser value of the invariant
I0 at timeθ = 0 is putted into the surface with greater value,
then this relation between these surfaces is conserved during the
motion. Due to this we may set up a problem of the trajectory
envelopes corresponding to the initial datau0 which are inside
the fixed six-dimensional sphere(u(0),u(0)) = I0. At a fixed
momentθ all these trajectories are contained inside the sphere
in theu0−space which is formally described by the equation

(u(θ,u0), G−1(θ)u(θ,u0)) = I0

with the vectoru0 as the surface parameter. Passing on the
parametric description on the base of vectoru = u(θ,u0) we
find that this surface is the face of the six-dimensional ellipsoid

(u, G−1(θ)u) = I0 (5)

at each momentθ. It is true because the above coordinate trans-
formation is affine due to the linearity of the Eq.(2). Thus, the
desired envelopes are formated by means of the motion of the
surface (5).

Notice, that for the system with one degree of freedom which
describes thex-oscillations one would show thatG22(θ) =
β(θ), G12(θ) = −β̇(θ)/2, G11(θ) = γ (θ) whereγ is deter-
mined from the condition detG(θ) = 1. In this case the using
of Eq.(4) gives the expression

I = γ ẋ2 − β̇xẋ + β ẋ2

coinciding with Courant-Snyder invariant [6]. Consequently, the
surface in this case is the ordinary ellipse.

4. Envelopes of beam motion

We consider now the particle motion neglecting the friction
connected with the particle radiation. Then Eq.(2) represents
the canonical Hamiltonian system for which SpA(θ) = 0, i.e.
detM(θ) = 1 [7], and the phase volume containing inside
the surface (5) is constant due to Loiuville’s theorem. We
assume further that system (2) is stable, i.e. the case when
eigenvalues of the monodromy matrixM(T) (T is the period
A(θ + T) = A(θ)) have unit modulus and the set of theirs
is divided on mutually conjugate pairs. The typical trajectory
of the particle motion is almost periodic in general case, i.e.
the eigenvalues are immenconsurable. However each trajectory
moves on accompanying ellipsoid (5). In turn the matrixG(θ)

is not periodic also in general case,G(T) 6= G(0) = 1, i.e. the
ellipsoid (5) does not coincide with itself after a lapse of the
period. It is connected with that the monodromy matrix is not
unitary in general case due to its eigenvectors are not mutually
orthogonal. Then the desired envelopes are the envelopes of all
possible shiftsθ → θ + nT, n = 1, 2, 3, ... of the surface (5).
Since we want to determine separately the envelope relative to
each dynamic variableul , then it is suitable to divide the solution
of this problem on two stages. On first stage we determine the
maximum valueūl (θ) = max[ul (θ)] of the variableul (θ) for
all trajectories with the initial valuesu0 inside the sphere (5) at
θ = 0. On second stage we must calculate the maximum value
ũl of the functionūl (θ) on all possible shifts of theθ,

ũl = sup{ūl (θ + nT), n = 0, 1, 2, 3, ...} (6)

This value is the desired envelope for the dynamic variableul (θ).

First stage of the above described procedure is reduced to the
simple geometrical problem connected with the ellipsoid. We
give it solution below. Under above considerations to calculate
the valuesūl (θ) it is sufficient to find the valuēul = max[ul ]
where the maximum is computed for all points of the envelop-
ing ellipsoid (5). Calculate, for example, the valueū1, deter-
mining the maximum ofu1 by varyingu2, ..., u6 over the el-
lipsoid surface. In this case we may consideru1 to be the im-
plicit function of u2, ..., u6 parameters. Since in Eq.(5) theθ
is fixed and, hence, we do not specify below the dependence
on θ. Denote P ≡ G−1(θ) and by symbolP′ the truncated
5 × 5- matrix which is obtained fromP by crossing out the
first line and the first column. Denote alsoQ ≡ (P′)−1. In
all below formulae the summation respective to repeating in-
dexes is performed from 2 to 5. By differentiating Eq.(5) on
us, s = 2, ..., 5 respectively and requiring the maximality of
u1, i.e. u1 → ū1, ∂u1/∂us = 0, s = 2, ..., 5, we obtain
ul = Qls Ps1ū1, l = 2, ..., 5. The substitution of theseul - val-
ues in (5) gives the equation for thēu1- calculation

I0 = ū2
1[ P11 − r ], r = P1k QkmPm1, (7),

where we applied the identity

Plm Qmk = P′
lm Qmk = δlk; l , k = 2, ..., 5.

Now we transform the expression in square brackets. It fol-
lows from the definition of theP- matrix that

G1k P1m + Gkl Plm = δkm, G11P11 + G1k P1k = 1,

G1k P11 + Gkl Pl1 = 0, k, m = 2, ..., 5.

The first equation shows thatr = P1mQmkPk1 +G1k P1kr. Using
second and third equations we obtain

rG11P11 = P1kGkmPm1 = −P1kG1k P11 = (1 − P11G11)P11.

Substituting the expressionr = 1/G11 − P11 in Eq.(7) and
recovering the dependence onθ, we derive the final formula

ū1(θ) = ±(I0G11(θ))1/2.

The calculations performed are related literally for every dy-
namic variableul and therefore the general formula is valid

ūl (θ) = ±(I0Gll (θ))1/2 (8)

Eq.(8) gives the general expression forūl (θ) obtaining on first
stage of the above described calculation procedure. Three al-
most periodic functionsGll (θ), l = 1, 2, 3 can be called the
generalized magnetooptic functions of the accelerator structure.

Pass on the second stage of the envelope computation. If
the monodromy matrix is unitary, theñul (θ) = ūl (θ), i.e. the
envelope form is determined by the Eq.(8). But the opposite
case with the nonunitary monodromy matrix takes place as a rule.
And we must use Eq.(6) in order to find the envelopes. Due to the
almost periodicity of the matrixG(θ), the ellipsoids (5) obtained
by the consequent shiftsθ → θ + nT do not coincide with each



          

other. Therefore the problem arises to find the envelope of all
possible shifts mentioned for each valueūl (θ), l = 1, ..., 6. To
do this it may set up the following problem. Is there an ellipsoid
(5) which coincides with itself after the shiftθ → θ + T, i.e. is
there an initial matrixG0 such that the matrixG(θ), G(0) = G0

which satisfies to Eq.(3) and toG(2 + T) = G(θ)? If there
are the ellipsoids with described property then we may put the
initial unit sphere(u0,u0) = 1 into one of them and the next
question arises. Would one to elect the matrixG0 by an optimal
way when the envelope (6) generated by the motion with initial
datau0 on the sphere will coincide with the optimal ellipsoid?
Answers on these questions contain the following assertions.

Theorem 1.If the system (1) is stable, then there is always
the ellipsoid (5) which is invariant relative to the transformation
θ → θ +T. along the trajectories of the motion. It is determined
by the matrixG−1

0 (G+
0 = G0, detG0 = 1) of the quadratic

form coefficients. If the spectrum of the matrixM(T) is not
degenerate, then this ellipsoid is unique to within the isotropic
dilatation.

Theorem 2.If the spectrum of the matrixM(T) of the stable
system is not degenerate and has not some pairs of the com-
mensurable Flouquet exponents, then there is the unique ellip-
soid enveloping all trajectories with initial datau0 lying on the
sphere(u0,u0) = I0. This ellipsoid coincides with the invariant
ellipsoid mentioned in Theorem 1. and it is circumscribed round
the sphere determined by the valueI0, i.e. it is minimal among
invariant ellipsoids containing the sphere.

The properties expressed by these theorems one would con-
sider as the generalization for the linear uniform systems with
periodic dependence in time of the corresponding properties of
the linear autonomous Hamiltonian systems. If the oscillations
of charged particle for all degrees of freedom are connected and
have the immenconsurable frequencies when the system param-
eters are in general position, then the theorem conditions take
place and we may use their assertions for the finding of the mo-
tion envelopes. In particular, on the base of Theorem 2 we may
consider that the union of all ellipsoids obtained by the conse-
quent shifts on the periodT from the initial sphere coincides
with the circumscribed invariant ellipsoid. Therefore to find the
valueũl (θ) it is sufficient to build the circumscribed invariant el-
lipsoid and after that to calculate the valueūl (θ) for this ellipsoid
on the base of Eq.(8).

Here we’ll not give the complete proofs of the theorems for-
mulated. It will be done in other publication. We’ll point out
only that these proofs are based on the transformation possibility
of the monodromy matrixM(T) to the unitary one by means of
a reversible matrixS, which does not depend onθ. This idea we
illustrate below on the simple example.

Example. Consider the particular case of the linear sta-
ble Hamiltonian system for which the matrixA is constant.
Then M(θ) = exp(Aθ) and the monodromy matrixM(T) =
exp(AT) is not unitary in general case, i.e. the condition
M(T)M+(T) = 1 does not necessarily take place, sinceA 6=
−A+ and moreover the matricesA, A+ may be noncommuting.
But there is the matrixG0 such thatG+

0 = G0 and

G−1
0 AG0 = −A+.

It permits to build the matrixG = M(θ)G0M+(θ), which does
not depend onθ, i.e. it coincides with theG0 and, in particu-
lar, it is invariant relative to shift on the period. The proof of
the existence of the matrixG0 is based on the following argu-
ment. From one hand the system (1) is stable and therefore the
eigenvalues of the A are imagine and in addition they form the
mutually conjugate pairs. From other hand the sets of eigen-
values of the matricesA, A+ coincide with each other. Then
for eachA-eigenvalueα there is theA+-eigenvalueα∗ such that
α + α∗ = 0. It is sufficient for the existence of the nontrivial
solution of the matrix Lyapunov equationAG0 + G0A+ = 0. If
the spectrum of the A is not degenerate, then the eigenvalueα∗

is unique for eachα. and therefore the matrixG0 is also unique
due to the condition detG0 = 1. Notice that one would always
represent the matrixG0 in the formG0 = SS+ where the matrix
Srealizes the transformation the matrixM(T) to the unitary one.
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