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Abstract unique solution of the equation
The method for calculation of the beam motion envelopes in .
the six-dimensional phase space of charged particle moving in M@©) = A@)M(®) @

a cyclic e}ccelerator_|s proposed. It_|s based on the mvanapce}NcIthh initial condition M(0) = 1. Since the dependend()
the special quadratic form depending on the dynamic varlablgs iecewise constant and it is periodic respective td,5]
relatively to the shift along the particle trajectory. The envelopés P P P —

are expressed as the explicit functions of the form coefficients, the matrix (9) can be always determined explicity on the
P P Basis of quite tedious calculations for the specified accelerator

design. Further, the matrid (6) will be assumed known. To

determine the motion envelope with respect to thephase
The classical problem for development of cyclic accelergoordinate it is necessary to calculate mdxf(0)ux(0)] where

tor of charged particles is the calculation of the envelopes b maximum is determined by the exhaustion of all possible

the particle beam with respect to different dynamic variabl&¥tial dataux(0), k = 1, ..., 6, which the beam particles possess

u(9), | =1, ..., 6, which are the components of the state ve@t certain fixed initial moment. This calculation procedure is

tor u(9) of a charged particle in the point with fixed acceleratoery inconvenient and, therefore, it is preferable to obtain the

azimuthd. This problem is actual as before (see, for exampfermulae for envelopes directly in terms of matik(¢). Such

[1-3]). The envelopes determine the maximum possible vald@smulae are known for the case of the independewscillations

of the respective dynamic variables in any peinf the accelera- provided that the energy homogeneity takes place [6].

tor ring and therefore they determine various important physical ) )

characteristics of the beam: transverse sizes, divergence and en- 3. Invariant quadratic form

ergy spread [4,5]. In the present communication we propose thgniroduce the matrixG() = M@)M@®)* (+ denotes the

meth_od for calculation of the envelopes in terms of the evolutigRiix transposition), which according to Eq.(2) satisfies to the
matrix elements. equation

1. Introduction

2. Evolution matrix G@®H) = AB)G®O) + GO)A®)T 3

In general case the components of the state vector may#pf| to G(0) = 1. The matrix M(9) is reversible because
expressed by the set of the following valugsx, 8, n,z,2) [4],  d(IndetM(#))/d6 = Spd(In M(0))/do = SpM~L(O)M(0) =
i.e. U1(0) = x(0), U2(6) = x, and so on. Here, z are the par- SpA(6) and hence
ticle deviations along the normal and the binormal to the closed
orbit respectivelyy = (E — Es)/Es, E is particle energyEs
is the energy equilibrium value,= (¢ — ¢s) is phase deviation
from the equilibrium valuex, z are the rates connected with the ) i ) i )
coordinatess, z respectively. The charged particle dynamics €N the matrixG(9) is reversible and it may be possible to
in the cyclic accelerator in the one-particle approximation witAtroduce the quadratic foriy#) depending on the state vector

negligibly small random perturbations is described by the set'

0
detM(8) = exp{[ SpA®)dr} # 0
0

linearized equations [4,5] 1©) = u@©), GHOU®)). 4
Using the differentiation formuladG—1(9) /do =
u@) = A@)u (), 1 -G 16)G®)G1(H) and Egs.(1),(3), wefind that valligg) =

lo is a formal invariant relative to shift along the trajectory. So,

where the 6¢< 6- matrix A(9) = (A m(9)), |, m=1,...,6isthe the particle moves on the six-dimensional surface the shape and
periodic function with respect ®and it has a definite structurethe location of which in the six-dimensional phase space are reg-
with the dependence @rdefined by the given accelerator desigrulated by matrixG—1(9) and therefore it is changed with The
However, the concrete form of matri(9) has no importance surface is formed by the trajectories with the initial vecto¢®)
for the below proposed method. which give the same value of the invariahg,= (u(0), u(0)).

Determine the evolution matrid (9) for the above linear Since the surface under considerationis the sphere aftin®,
system by the relationshid (9)u (0) = u (). This matrix isthe then it is closed and simply connected at any time moment.



Moreover, since the surface with lesser value of the invariahhis value is the desired envelope for the dynamic varialgty .
lp at time® = 0 is putted into the surface with greater value, First stage of the above described procedure is reduced to the
then this relation between these surfaces is conserved duringsineple geometrical problem connected with the ellipsoid. We
motion. Due to this we may set up a problem of the trajectogpve it solution below. Under above considerations to calculate
envelopes corresponding to the initial datawhich are inside the valuesy; (9) it is sufficient to find the valu&, = max|u;]
the fixed six-dimensional spheta(0), u(0)) = lo. At a fixed where the maximum is computed for all points of the envelop-
momentd all these trajectories are contained inside the sphéeng ellipsoid (5). Calculate, for example, the valug deter-
in theup—space which is formally described by the equation mining the maximum oti; by varyingus, ..., ug over the el-
_ lipsoid surface. In this case we may considerto be the im-
U, up), GO, ug) = lo p?icit function of u, ..., Ug paramete?/s. Since in Eq.(5) the
with the vectoru, as the surface parameter. Passing on tiefixed and, hence, we do not specify below the dependence
parametric description on the base of veaioe u (8, ug) we o0n 6. DenoteP = G~1(9) and by symbolP’ the truncated
find that this surface is the face of the six-dimensional ellipsofdx 5- matrix which is obtained fronP by crossing out the
1 first line and the first column. Denote al€ = (P)~ 1. In
U, G @) = lo ®)  all below formulae the summation respective to repeating in-

at each momertt. It is true because the above coordinate trandexes is performed from 2 to 5. By differentiating Eq.(5) on

formation is affine due to the linearity of the Eq.(2). Thus, thés, S = 2, ..., 5 respectively and requiring the maximality of

desired envelopes are formated by means of the motion of the i-€- U1 — U1, du1/dus = 0, s = 2,...,5, we obtain

surface (5). u = QisPsatyg, | = 2, ..., 5. The substitution of these - val-
Notice, that for the system with one degree of freedom whitgS in (5) gives the equation for thig- calculation

describes thex-oscillations one would show thdb,>(0) = _2

(), G1a6) = —(6)/2, G11(6) = y(6) wherey is deter- lo = Ui[P—r]. 1 = PuQumPm1. @,

mined from the condition d_eﬁ(@) = 1. In this case the using where we applied the identity

of Eq.(4) gives the expression

| = 52— fxk + B2 Pim Qmk = Pl Qmk = dik: 1.k =2, ..., 5.
coinciding with Courant-Snyder invariant [6]. Consequently, the Now we transform the expression in square brackets. It fol-
surface in this case is the ordinary ellipse. lows from the definition of thd>- matrix that
4. Envelopes of beam motion GwPim + GuPm = &km, Gu1Pu1 + GuPwk = 1,
We consider now the particle motion neglecting the friction GuwPiy + GyPy = 0, k,m=2,...,5.

connected with the particle radiation. Then Eq.(2) represents i )
the canonical Hamiltonian system for which/&p) = 0, i.e. | he firstequation shows that= PimQmikPia + GuPur. Using
detM(@) = 1 [7], and the phase volume containing insid&&cond and third equations we obtain

the surface (5) is constant due to Loiuville’s theorem. We

assume further that system (2) is stable, i.e. the case whi 1P = PuGimPm = —PuGucPr = (1 = PuGi) P

eigenvalues of the monodromy mat(T) (T is the period Substituting the expressian = 1/Gy, — Pyy in Eq.(7) and

A0 +T) = A(6)) have unit modulus and the set of theirgecovering the dependence @nwe derive the final formula
is divided on mutually conjugate pairs. The typical trajectory
of the particle motion is almost periodic in general case, i.e. u1(0) = £(1oG11(0)Y2.

the eigenvalues are immenconsurable. However each trajectory

moves on accompanying ellipsoid (5). In turn the ma@igg) The calculations performed are related literally for every dy-
is not periodic also in general case(T) # G(0) = 1, i.e. the namic variablay and therefore the general formula is valid
ellipsoid (5) does not coincide with itself after a lapse of the _

period. It is connected with that the monodromy matrix is not U(©) = £(1Gy©)"? ®

unitary in general case due to its eigenvectors are not mutuaé

I . . - )
orthogonal. Then the desired envelopes are the envelopes o tgln(S) gf'\:ﬁs thbe gen deral ggp;ess:onlf?(e) obtalncljng on_lflrr]st |
possible shift¥ — 6 +nT, n =1, 2, 3, ... of the surface (5). stage of the above described calcuration procedure. hree al-

Since we want to determine separately the envelope relativé 185t periodic functions, (9), | = 1,2, 3 can be called the
each dynamic variabla, then itis suitable to divide the Solutiongenerallzed magnetooptic functions of the accelerator strgcture.
of this problem on two stages. On first stage we determine th(fass on the second stage of the envelope computation. If

maximum valuew; () = maxu; ()] of the variableu; () for the rTono?romy mdattrix Is unéta;)ry,t:]hai(e)gz ué(et),t;.e. the it
all trajectories with the initial values, inside the sphere (5) at SNVEIOPE Torm 1S determined by the g.(8). But the opposite

6 = 0. On second stage we must calculate the maximum val %sewith the nonunitary monodromy matrix takes place as arule.
i, of the functiondi (9) on all possible shifts of the nd we must use Eq.(6) in order to find the envelopes. Due tothe

almost periodicity of the matri (), the ellipsoids (5) obtained
G, = sugu(@®+nT), n=0,1,2,3,...} (6) by the consequent shifts— 6 + nT do not coincide with each



other. Therefore the problem arises to find the envelope of klpermits to build the matrixG = M(8)GoM™ (), which does
possible shifts mentioned for each valygd),| = 1, ...,6. To not depend om, i.e. it coincides with the5, and, in particu-
do this it may set up the following problem. Is there an ellipsoidr, it is invariant relative to shift on the period. The proof of
(5) which coincides with itself after the shiit— 6 4+ T, i.e. is the existence of the matri&, is based on the following argu-
there an initial matrixGg such that the matri& (6), G(0) = Gy ment. From one hand the system (1) is stable and therefore the
which satisfies to Eq.(3) and B8(® + T) = G(0)? If there eigenvalues of the A are imagine and in addition they form the
are the ellipsoids with described property then we may put theutually conjugate pairs. From other hand the sets of eigen-
initial unit sphere(ug, up) = 1 into one of them and the nextvalues of the matriceé\, A™ coincide with each other. Then
guestion arises. Would one to elect the maBixby an optimal for eachA-eigenvaluex there is theAt-eigenvaluex* such that
way when the envelope (6) generated by the motion with initial+ «* = 0. It is sufficient for the existence of the nontrivial
dataug on the sphere will coincide with the optimal ellipsoidolution of the matrix Lyapunov equatichGg + GoA™ = 0. If
Answers on these questions contain the following assertionsthe spectrum of the A is not degenerate, then the eigenwilue
Theorem 1.If the system (1) is stable, then there is alwayis unique for eackr. and therefore the matri®, is also unique
the ellipsoid (5) which is invariant relative to the transformatioglue to the condition d&s, = 1. Notice that one would always
6 — 6+ T.along the trajectories of the motion. Itis determinetepresent the matri®, in the formGo = SS™ where the matrix
by the matrixG,*(GJ = Go, detGo = 1) of the quadratic Srealizes the transformation the mathik T) to the unitary one.
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eters are in general position, then the theorem conditions take
place and we may use their assertions for the finding of the mo-
tion envelopes. In particular, on the base of Theorem 2 we may
consider that the union of all ellipsoids obtained by the conse-
quent shifts on the period from the initial sphere coincides
with the circumscribed invariant ellipsoid. Therefore to find the
value(, (9) itis sufficient to build the circumscribed invariant el-
lipsoid and after that to calculate the valy€) for this ellipsoid
on the base of Eq.(8).
Here we'll not give the complete proofs of the theorems for-
mulated. It will be done in other publication. We'll point out
only that these proofs are based on the transformation possibility
of the monodromy matri® (T) to the unitary one by means of
a reversible matrixs, which does not depend @nh This idea we
illustrate below on the simple example.
Example Consider the particular case of the linear sta-
ble Hamiltonian system for which the matrik is constant.
Then M (©®) = exp(A9) and the monodromy matriki (T) =
exp(AT) is not unitary in general case, i.e. the condition
M(T)M*(T) = 1 does not necessarily take place, sicet
— AT and moreover the matricés AT may be noncommuting.
But there is the matrix, such thaG? = Gy and

Gy 'AGy = —A".



