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Abstract

In a synchrotron, protonbeams with injection steering errors per-
form coherent betatron oscillations, possibly of large amplitude.
The oscillations may be damped by using a system of a beam
position monitor and a variable, fast kicker combined in a feed-
back loop to form a ‘transverse damper’. The system of ring,
beam and damper can be modeled by iteration of a matrix map-
ping once per turn. This paper reports the calculation of damping
rates, and coherent tune shifts by analytic solution of the recur-
sions. Two cases are treated: (i) kick proportional to beam dis-
placement; and (ii) ‘bang-bang’ damping in which, above a cer-
tain threshold, the kick depends only on the sign (+=�) of the
displacement. We demonstrate (under certain conditions) that
the ‘bang-bang’ scheme provides a linear damping of the ampli-
tude and no tune shift, and (for the same peak power) is faster
than the conventional proportional damper which produces an
exponential damping with time.

I. INTRODUCTION

The aim of a damping system is to reduce the betatron oscilla-
tion of a beam as fast as possible. The damper may be designed
to reduce injection errors, or to combat coherent instability; often
the damper services both aims and its performance is a compro-
mise: the effect of the kick is small compared with the displace-
ment and it takes many repeated kicks to bring the beam on axis.
If the oscillation amplitude is not reduced in a short period of
time, then nonlinear effects which tend to accumulate with time,
can dilute the emittance and reduce the beam quality. In fact, if
filamentation is great enough the coherent motion ‘washes out’,
the dipole signal vanishes and damping stops. A further concern,
is that growth rate of a coherent instability is proportional to dis-
placement; and if the condition for instability occurs during in-
jection, the initial errors can be large. For these reasons it is im-
portant to provide fast damping. Further, if a damper intended
to combat instability (later in acceleration) is used to reduce in-
jection errors, its response will saturate for large amplitudes; and
we should still like to find the damping rate.

A. System model

We shall use the single particle model of coherent beam mo-
tion and linear optics to illustrate the working of the system and
derive its properties. Figure 1 shows the essential components
of a damping system. Assume, as is inevitable in practise, that
a beam has been injected into the synchrotron with some error;
and that it oscillates about the closed orbit. The oscillation can
be damped by reducing the net divergence with a fast kicker. For
simplicity, the kicker is taken as a thin element that changes only
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Figure 1. Schematic of a damping system.

the divergence but not the displacement at its location. Due to
power limitation of the kicker, the divergence is reduced a small
amount each revolution, and many kicks are required. Because
the direction of the divergence can be different each time, the
kick direction has to be adjusted accordingly. A beam position
pick up (P.U.) at  1 betatron phase advance up stream is used to
provide this feedback information.

B. Kick schemes

We shall consider only two possible kick schemes: (i) the
kick is proportional to upstream displacement, and (ii) the kick
magnitude is constant but the sign comes from the sign of the
beam displacement. The second scheme is simple to arrange:
the kicker is powered by a constant supply whose output polarity
is adjusted each time to damp the oscillation. This is known as
‘bang–bang’ damping. For the proportional kick, the P.U.-signal
is used to drive a linear amplifier that powers the kicker. This
eliminates the possibility of ‘over kicking’ the particle, as is un-
avoidable with a constant magnitude kick. In reality a linear am-
plifier will saturate at some peak power, and so above a certain
threshold displacement, the magnitude of the kick becomes con-
stant. Consequently, with this arrangement, the time sequence of
kicks is a combination of proportional or constant. However, for
simplicity, we only derive the damping characteristics of either
purely proportional or purely constant-magnitude kicks.



II. PROPORTIONAL KICK
Consider first the case of a proportional kick, which leads to

exponential damping of the betatron oscillation. We will outline
the derivation of the coherent tune shift and the dependence of
the damping coefficient on the beta function and phase advance.
We adopt a vector notation in which the first component is the
displacement and the second the divergence.

In Figure 1, xn denotes the coordinates of the particle at the
pick–up after n revolutions and likewise yn at the kicker. The
magnitude of the kick is

�y0
n
= �kxn; (1)

where k is the kick strength proportionality constant. The dis-
placement is assumed to be unchanged. The coordinates of the
particle on the next turn become

xn+1 =M0xn = fM2(M1 +K)gxn ; (2)

whereM1 is the linear transfer matrix from the P.U. to the kicker,
M2 is that from the kicker (around the far side of the ring) back to
the P.U., and K is the kick matrix. The modified one–turn map,
M0, is linear; so applying the map n times to the intial coordi-
nates x0, we have

xn = (M0)n x0 : (3)

Equation 3 is a system of 2 linear homogenous equations with
constant, real coefficients and has solutions of the form

xn = �ne; (4)

where � and e are corresponding eigenvalue and eigenvector of
M0. Because M0 is 2 � 2 and real, the two eigenvalues and
eigenvectors come in complex conjugate pairs. Let us write � =
exp(�+ i�) and e = u+ iv with �; � and u,v real. The com-
plete solution can be written as

xn = en�fc1 (u cosn� � v sinn�)

+ c2 (u sinn� + v cos n�)g ; (5)

where c1 and c2 are real constants. The oscillation is exponen-
tially damped and has a modified one–turn phase advance �. The
damping coefficient � is given by

e2� = 1� k(��1)
1=2 sin  1; (6)

where � and �1 are the beta function at the pick–up and at the
kicker respectively, and  1 the relative phase advance between
them. � is given by

cos � =
2 cos  � k(��1)

1=2 sin  2

2[1� k(��1)1=2 sin  1]1=2
; (7)

where  2 is the phase advance from the kicker, around the far
side of the ring, to the P.U. and  is the unperturbed one–turn
phase advance without damping.

III. CONSTANT MAGNITUDE KICK
When the magnitude of the kick is the same each time, xn is

given by a nonlinear recursion. The mapping contains the sum-
mation over all previous revolutionsof the function sgn(xk), and

does not admit an exact solution in closed form. However, we
will show that to first order and under a certain phase advance,
the damping of the amplitude is linear with turn number and there
is no coherent tune shift.

We start with the one–turn map modified by the constant mag-
nitude kick:

xn+1 =M(xn + sgn(xn)�); (8)

where � is the equivalent of the kick transformed upstream to
the pick–up andM is the unperturbed one–turn map of the ring.
The map of xn after n revolutions is thus

xn =Mnx0 +

n�1X

k=0

sgn(xk)Mn�k� : (9)

The solution xn can be written in terms of the eigenvalues and
eigenvectors ofM. After some algebra, the complete solution of
the displacement can be written

xn = C cos(n + �) (10)

+ D cos(n + �)

n�1X

m=0

sgn(xm) cos(m +��)

+ D sin(n + �)

n�1X

m=0

sgn(xm) sin(m +��);

where C, �, are determined by the initial conditions and D, ��
are determined by the kick strength and  1 .

When the kick is independent of amplitude, one can prof-
itably think of the damping as occurring not by changing the di-
vergence, but by changing the closed orbit (C.O.) each turn to
bring it closer to the displaced beam. Given that it is only the
C.O. which changes we should expect no tune shift. Hence to
first order, we can substitute the unperturbed oscillation xm =
C cos(m + �) in sgn(xm) on the right hand side of equation
(10). In order to evaluate the sum, we approximate sgn[xm] by
cos(m + �). After summation, collecting like terms gives four
sinusoidal terms of equal phase advance per turn. Hence, to first
order there is no coherent tune shift of the damped oscillation and
so the trial solution is self-consistent. Neglecting the two sinu-
soidal terms whose amplitudes are constant and small compared
to the initial beam amplitude, the damped oscillation decreases
linearly as n. For the special case in which 1 is an odd multiple
of �=2 and the derivative of the beta function at the P.U. is zero,
the damped oscillation can be written as

xn � (A� n�) cos(n + �); (11)

whereA is the modified initial amplitude and the linear damping
rate

� =
p
��1j�y

0j: (12)

depends on the constant magnitude kick.



Figure 2. Linear damping by constant magnitude kick.

IV. SIMULATION OF DAMPING
We have computer simulated a damping system with constant

magnitude kick to compare the results with the linear damp-
ing rate given in equation (12), and also to confirm that there is
no coherent tune shift for any phase advance between P.U. and
kicker. A damper subroutine was written and incorporated into
the multiparticle-tracking injection-simulation code ACCSIM.
The optics assumed was that of the KAON Factory Accumulator
ring. As a check, the code was used to simulate the case of a pro-
portional kick, where the damping coefficient and tune shift can
be compared with exact expressions (6 and 7); and the accuracy
was found to be satisfactory.

Figure 2 shows the displacement of the particle as registered
by the pick–up as the oscillation is being damped with a constant
magnitude kick of j�y0j = 0:1 mrad. The large initial displace-
ment was chosen to highlight the linear decay of the amplitude.
However, to allow Fourier analysis and extraction of the tune, we
have chosen j�y0j = 0:005 mrad which damps an amplitude of
about 100 mm in a few thousand turns. The results tabulated be-
low are for five different phase advances 1 between the pick–up
and the kicker, including the special case of �=2. All five cases
exhibit linear damping and, in all cases, the tune shift is less than
5�10�5, which is the resolution limit of the FFT. This confirms
that there is no tune shift.

Table I : Simulations for constant magnitude kick.
 1 �1 2��� Damping rate
2� (m) �10�6 (10�3 mm/rev)

0.2347 5.262 �10:0� 0:1 �21:93� 0:05

0.2500 6.033 0:0� 0:10 �23:63� 0:05

0.3141 15.891 40:0� 0:1 �35:34� 0:05

0.4508 9.303 50:0� 0:1 �8:81� 0:05

For the special case  1 = �=2, we can compare the actual
damping rate to that given by the approximate formula (11). The
formula gives a linear decay rate of 37:14 � 10�3 mm/rev and
the actual rate (from simulation) is (23:63 � 0:04) � 10�3

mm/rev. The discrepancy is large, and is due to the approxima-
tion of sgn(xm) by cos(m + �) in the derivation. Given that
jsgn(xm)j � j cos(m + �)j and kicks in the simulation are
larger than in the approximate summation, it may surprise that

the simulated damping rate is smaller. However, with a constant
kick, there will be times when the kick is too large which re-
sults in temporary antidamping. However, if the kick is scaled
as cos(n +�) the resulting damping is more effective, because
there is less over kicking. Hence the formula (12) slightly over
estimates the damping rate, but can estimate the kick require-
ment �y0 if used with care.

V. PERFORMANCE CONSIDERATIONS
According to the expression (6) for the exponential damping

coefficient, the pick–up and the kicker should be placed as close
as possible to where the beta function has its maximum values
and the relative phase advance should be ideally an odd multiple
of �=2. This arrangement produces the fastest damping because
the displacement of the particle is greatest at the P.U. and this,
in turn, leads to large proportional kicks. The same arrangement
also works well for the case of damping with constant magnitude
kick; because the given kick makes the largest possible change
to the closed orbit.

If the amplifier has infinite power resources, then obviously
exponential damping is faster than linear damping. In reality,
the amplifier will saturate and so for the same peak power linear
damping is often faster. For an oscillation amplitude at the peak
power limit, and proportional kicking, the number of revolutions
np required to damp the amplitude to 1=e is:

np = 2=[k
p
��1] : (13)

For the same amplitude and peak power, and constant magnitude
kicking,

nc = 1=[k e
p
��1] : (14)

Accordingly, linear damping is ' 2e faster than exponential
damping for the same peak power. A drawback of linear damp-
ing is that it does not damp the amplitude down to zero. To
achieve this, some final stage exponential damping is necessary.

VI. CONCLUSION
We have derived the characteristics of damping systems with

purely proportional kick and purely constant magnitude kick un-
der certain conditions. We have found that proportional kick
produces exponential damping and induces a coherent betatron
tune shift; whereas the constant magnitude kick produces linear
damping and no coherent tune shift. We have also considered the
damping performance of these two types of kick with practical
power supply constraints and found that linear damping is faster.
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